English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 58316907      線上人數 : 12486
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98525


    題名: 結合語意等級推論與生理訊號融合之青少年自殺風險多模態篩檢框架;Multimodal Suicide Risk Screening in Adolescents via Semantic Ordinal Inference and Physiological Signal Fusion
    作者: 康馨儒;Kang, Sin-Ru
    貢獻者: 資訊工程學系
    關鍵詞: 青少年自殺風險;序列回歸;CORN 模型;多模態融合;生理訊號;自然語言處理;注意力式聚合;Adolescent suicide risk;ordinal regression;CORN;multimodal fusion;biosignals;natural language processing;attention pooling
    日期: 2025-08-05
    上傳時間: 2025-10-17 12:53:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究提出一套青少年自殺風險的多模態篩檢框架,將模型推論的序列文本分數與行為及生理訊號進行融合。系統透過一套 CORN 架構的序列回歸模型,將受試者的自由文字回答轉換為對應問卷項目的嚴重程度分數,藉此避免人工填寫 PHQ/GAD 等量表,同時保留臨床可解釋性。上述文本分數與語音韻律、臉部表情、心率變異度(HRV)與眼動等模態特徵,經由注意力式聚合網路共同融合以進行風險預測。為解決類別不平衡問題,訓練過程中採用了加權損失與加權抽樣策略。在虛擬心理健康訪談系統(VMHI)所蒐集的真實青少年資料集上進行實驗,結果顯示二分類任務中準確率達 90%,macro F1 分數為 0.90;三分類設定下亦達到 90% 準確率與 0.84 的 macro F1。消融實驗進一步證實,整合序列文本分數能顯著提升分類效能。研究結果顯示,將語義對齊的文字表示與多模態行為訊號結合,有助於建立一套具備可擴展性、可解釋性,且能降低臨床負擔的早期自殺風險篩檢工具,具備應用於不同場域及早識別潛在風險之潛力。;This paper proposes a multimodal suicide risk screening framework for adolescents that integrates model-inferred ordinal text scores with behavioral and physiological signals. Free-text responses are mapped to questionnaire-aligned severity scores using a CORN-based ordinal regression model, eliminating the need for manual PHQ/GAD scoring while preserving clinical interpretability. These scores are fused with features from prosodic speech, facial expressions, heart rate variability (HRV), and eye movement patterns via an attention-based aggregation network. To address class imbalance, the model employs weighted loss and a weighted sampler during training. Experiments on a real-world adolescent dataset collected via a Virtual Mental-Health Interviewer (VMHI) demonstrate robust performance: 90% accuracy and 0.90 macro F1 in binary classification, and 90% accuracy and 0.84 macro F1 in the three-class setting. Ablation studies show that integrating ordinal text scores significantly enhances classification. These results suggest that combining question-aligned language representations with multimodal behavioral data provides a scalable, interpretable, and low-burden approach to early suicide risk screening. This approach also has the potential to reduce clinical workload and facilitate earlier mental health intervention.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML12檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明