English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56461194      線上人數 : 2312
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98543


    題名: 可變壓縮率 Transformer–CNN 混合式自適應影像壓縮;Variable-Rate Transformer–CNN Hybrid for Adaptive Image Compression
    作者: 許淳嘉;Hsu, Chun-Chia
    貢獻者: 電機工程學系
    關鍵詞: 影像壓縮;Swin Transformer;CNN;Image Compression;Swin Transformer;CNN
    日期: 2025-08-20
    上傳時間: 2025-10-17 12:54:37 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著影像應用的普及,靈活且高效的影像壓縮技術需求日益增加。傳統編碼器如 JPEG、JPEG2000 和 BPG 雖具穩定性,但面對複雜影像內容與現代應用場景時已逐漸顯現其限制。近年來,學習式影像壓縮(Learned Image Compression, LIC)憑藉深度神經網路展現出優越的壓縮效率,但大多數方法仍須針對每個壓縮率訓練獨立模型,缺乏彈性。本研究提出一種具可變壓縮率能力的影像壓縮架構,結合 Transformer 與 CNN 模型,並引入 λ 調控機制以支援單一模型在不同壓縮率下自適應調整。我們設計了動態模組與選擇性副特徵通道,有效提升模型在各種碼率下的率失真表現。實驗在 Kodak、CLIC 與 Tecnick 等資料集上進行評估,結果顯示本方法在 PSNR、MS-SSIM 及 BD-rate 指標上均優於多項現有方法,展現出良好的靈活性與實用性,適合作為未來可變位元率影像壓縮的解決方案。;With the growing demand for image-related applications, there is an increasing need for flexible and efficient image compression techniques. Traditional codecs such as JPEG, JPEG2000, and BPG offer stable performance but have shown limitations when dealing with complex visual content and modern usage scenarios. Recently, learned image compression (LIC) has demonstrated superior compression efficiency through deep neural networks; however, most existing methods require training a separate model for each compression rate, lacking adaptability. In this work, we propose a variable-rate image compression framework that combines Transformer and CNN architectures, and incorporates a λ-conditioned mechanism to enable a single model to dynamically adjust its behavior across different bitrates. We design dynamic modules and a selective side-channel pathway to improve rate-distortion performance under various compression levels. Experiments conducted on standard datasets such as Kodak, CLIC, and Tecnick show that our method outperforms existing approaches in terms of PSNR, MS-SSIM, and BD-rate, demonstrating strong flexibility and practicality, making it a promising solution for future variable-rate image compression systems.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML9檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明