中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98545
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60039374      線上人數 : 939
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98545


    題名: DiffRainNet:應用於台灣區域之結合地形調製注意 力與擴散式殘差修正的高解析降雨降尺度模型;DiffRainNet: A Terrain-Modulated Attention Network with Diffusion-Based Residual Refinement for Regional High-Resolution Rainfall Downscaling in Taiwan
    作者: 葉耀中;YE, YAO-ZHONG
    貢獻者: 資訊工程學系
    關鍵詞: 高解析度降雨降尺度;條件式特徵調變;條件式擴散模型;殘差修正機制;注意力神經網路;氣象與地形融合;High-resolution rainfall downscaling;conditional feature modulation;conditional diffusion model;residual refinement mechanism;attention neural networks;atmospheric–terrain fusion
    日期: 2025-08-11
    上傳時間: 2025-10-17 12:54:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 高解析度降雨降尺度對於地形複雜地區的水文氣象應用至關重要,特
    別是在如台灣這樣的山區環境中。本研究提出 DiffRainNet,一種新穎的深
    度學習架構,用於將粗解析度的大尺度環流資料轉換為細緻的降雨分布。該
    模型結合三大關鍵模組:(1)基於 FiLM 的地形感知調製機制,可根據地形
    資訊動態調整特徵表徵;(2)多層級注意力機制,包括 SEBlock、CBAM 與
    Self-Attention 模組,有效提取具代表性的空間特徵;(3)條件式擴散模
    型,透過學習殘差修正進行降尺度,以還原真實的降雨結構與強度。
    實驗以台灣東北部冬季季風為案例,結果顯示 DiffRainNet 在數值誤
    差與空間結構保留方面皆明顯優於基準模型。相較於標準 U-Net,
    DiffRainNet 使 RMSE 降低 47%、MAE 降低 53%,並在中雨與大雨事件中
    獲得最高的 SSIM 分數。在主要的 10–30 mm/6 小時降雨區間(涵蓋多數
    超過 10 mm 的降雨事件)中,DiffRainNet 較 U-Net 基準模型的 MAE 和
    RMSE 降低了 48%,突顯其對最常見降雨強度的優化能力。視覺化比較進一
    步驗證,DiffRainNet 能夠重建與地形一致的降雨梯度、保留精細空間結
    構,並有效抑制乾燥區域的虛假信號。這些結果凸顯了 DiffRainNet 作為
    一種物理一致且資料驅動的高解析度降雨模擬解決方案,在複雜地形環境
    中的應用潛力。;High-resolution rainfall downscaling is essential for hydrometeorological
    applications in regions with complex terrain such as Taiwan. This study proposes
    DiffRainNet, a novel deep learning framework for reconstructing fine-scale
    rainfall fields from coarse-resolution atmospheric circulation data. DiffRainNet
    consists of three key components: (1) FiLM-based terrain-aware conditioning,
    which dynamically modulates feature representations according to topographic
    context; (2) multi-level attention mechanisms---including SEBlock, CBAM, and
    Self-Attention---that selectively emphasize informative spatial features across
    scales; and (3) a conditional diffusion model that refines coarse predictions by
    learning residual corrections, thereby restoring realistic rainfall structure and
    intensity.
    Experiments over northeastern Taiwan under winter monsoon conditions
    demonstrate that DiffRainNet substantially improves both numerical accuracy
    and spatial coherence. Compared to a standard U-Net, it reduces RMSE by 47%
    and MAE by 53%, while also achieving the highest SSIM scores in both moderate
    and heavy rainfall scenarios, indicating superior preservation of spatial rainfall
    structures. In the dominant 10-30 mm/6 hr rainfall regime covering most
    occurrences above 10 mm, DiffRainNet lowers MAE and RMSE by about 48%
    compared to the U-Net baseline, highlighting its capability to refine the most
    frequently occurring rainfall intensities. Visual comparisons further confirm that
    DiffRainNet reconstructs terrain-aligned rainfall gradients and preserves finescale
    spatial structures while suppressing spurious signals in dry regions. These
    results underscore its potential as a physically consistent, data-driven solution for
    high-resolution rainfall modeling in complex orographic environments.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML18檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明