中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98557
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59606768      Online Users : 2254
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98557


    Title: SAM-VPG:基於視覺提示引導之少樣本工業瑕疵分割方法;SAM-VPG:Few-Shot Segmentation of Industrial Defects via Visual Prompt Guidance
    Authors: 許仁覺;HSU, JEN-CHUEH
    Contributors: 資訊工程學系
    Keywords: 瑕疵檢測;異常檢測;SAM;少樣本學習;視覺提示;Defect detection;Anomaly detection;SAM;Few-shot learning;Visual prompt
    Date: 2025-08-13
    Issue Date: 2025-10-17 12:55:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究針對工業瑕疵檢測中標記成本過高與少樣本學習性能不佳的問題,提出SAM-VPG (Few-Shot Segmentation of Industrial Defects via Visual Prompt Guidance)方法。SAM-VPG以SAM(Segment Anything)架構為基礎,融合高效微調與精細視覺提示,並使用瑕疵知識遷移提升少樣本瑕疵分割的性能。SAM-VPG採用四項技術策略:(1)設計精細視覺提示,包括框提示與群中心點提示,提供更豐富的瑕疵空間與特徵資訊;(2)引入低秩適應(LoRA)高效微調策略增強模型泛化能力;(3)建立瑕疵遷移學習策略,提升少樣本分割的準確度;(4)整合輕量化架構以滿足實際部署需求。本研究在MVTec AD標準資料集與自建SPTD工業瑕疵資料集上進行0-shot至20-shot的效能評估,實驗結果顯示SAM-VPG優異的表現:在MVTec AD的0-shot測試中達到89.1% AUROC,展現良好的跨域泛化能力;在SPTD資料集上相較於基準方法可將IoU從50.5%提升至58.9%,驗證其在複雜工業場景的適應性。;To address the challenges of high labeling costs and poor few-shot performance in industrial defect detection, this study proposes SAM-VPG (Few-Shot Segmentation of Industrial Defects via Visual Prompt Guidance). Built upon the Segment Anything (SAM) architecture, SAM-VPG integrates efficient fine-tuning with refined visual prompts and leverages defect knowledge transfer to enhance few-shot segmentation performance. It adopts four technical strategies: (1) refined visual prompts, including box prompts and cluster-centroid point prompts, to provide richer spatial and feature information of defects; (2) incorporation of LoRA, a low-rank adaptation strategy, for efficient fine-tuning and enhanced model generalization; (3) construction of a defect transfer learning strategy to improve few-shot segmentation IoU; (4) integration of a lightweight architecture to meet practical deployment demands. The proposed method is evaluated on both the standard MVTec AD dataset and the custom SPTD (Spingence Tiny Defect) dataset across 0-shot to 20-shot scenarios. Experimental results demonstrate the superior performance of SAM-VPG: achieving 89.1% AUROC in 0-shot testing on MVTec AD, demonstrating strong cross-domain generalization; and improving IoU from 50.5% to 58.9% compared to baseline methods on the SPTD dataset, validating its adaptability to complex industrial environments.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML16View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明