中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98602
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 58303927      Online Users : 11460
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98602


    Title: 計算流體動力學模擬對具有氣簾隔離的三維生物列印平台流場視覺化與分析;Flow Field Visualization and Analysis by Computational Fluid Dynamics Simulation for 3D Bioprinting Platform with Air Curtain
    Authors: 饒芳亭;Rao-Fang-Ting
    Contributors: 機械工程學系在職專班
    Keywords: 三維生物列印;計算流體動力學;氣簾;數值分析;3D Bioprinting;CFD;Air Curtain;Numerical Analysis
    Date: 2025-06-27
    Issue Date: 2025-10-17 12:59:14 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 為實現器官複製與再生醫療之目標,三維生物列印(3D Bioprinting)技術結合三維列印與組織工程的核心理念,透過精確控制生物材料與細胞的空間排列,製造具生物功能性的組織與器官。在眾多列印方式中,擠出式生物列印(Extrusion-based Bioprinting, EBB)因其具備處理高黏度生物墨水,並支援長時間連續列印,成為目前最廣泛應用的技術。相關研究指出,擠出式生物列印常使用的生物墨水多屬於溫感型材料,例如明膠(Gelatin)等。此類材料對溫度變化高度敏感,需維持在特定的溫度範圍內,方能確保良好的成形性與細胞活性。因此,使用溫感型材料進行列印時,其成品質量容易受到生物墨水流變特性與列印過程中環境溫度變化的影響,進而可能導致細胞存活率降低及結構穩定性不足等問題。
    為提升列印過程之環境穩定性,先前研究所自行發展之擠出式生物列印設備在列印平台兩側設置氣簾封閉式列印環境模組,利用受控氣流於列印區域上方形成穩定氣簾,降低外部環境溫度波動對生物墨水性質與列印品質的影響。
    為深入探討氣簾封閉式列印環境模組對列印區域氣流行為之影響,本研究運用計算流體動力學(Computational Fluid Dynamics, CFD)進行三維數值模擬,分析其速度場、壓力場與氣流結構特性。透過3D流線圖、Q準則及平面流線圖辨識渦流區域,進一步評估氣流均勻性、穩定性、氣流下沉深度及其佔據列印空間之比例,藉此量化氣簾對列印區域屏障效果之影響,並提出模組設計優化建議,以實現更穩定且可控之封閉式生物列印環境。
    ;To achieve the goal of organ replication and regenerative medicine, three-dimensional bi-oprinting (3D Bioprinting) integrates the core concepts of 3D printing and tissue engineering to fabricate biologically functional tissues and organs by precisely controlling the spatial ar-rangement of biomaterials and cells. Among various printing methods, extrusion-based bi-oprinting (EBB) is currently the most widely used technology due to its capability to handle high-viscosity bioinks and support long-duration continuous printing.According to related studies, bioinks commonly used in extrusion-based bioprinting are often thermosensitive materials, such as gelatin. These materials are highly sensitive to temperature changes and must be maintained within a specific temperature range to ensure proper printability and cell viability. As a result, the quality of printed constructs using thermosensitive materials is eas-ily affected by the rheological properties of the bioink and environmental temperature fluc-tuations during the printing process, potentially leading to decreased cell survival and insuf-ficient structural stability.
    To enhance environmental stability during printing, previous studies developed an extru-sion-based bioprinting system equipped with air curtain temperature isolation devices in-stalled on both sides of the printing platform. Controlled airflow is used to form a stable air curtain above the printing area, thereby reducing the impact of external temperature fluctua-tions on the properties of the bioink and the quality of the printed constructs.
    To comprehensively investigate the influence of the air curtain thermal isolation device on airflow behavior within the printing zone, this study employs Computational Fluid Dynam-ics (CFD) for three-dimensional numerical simulations. The analysis focuses on the velocity field, pressure field, and airflow structure characteristics. Vortex regions are identified using 3D streamline visualization, Q-criterion, and planar streamlines, enabling the evaluation of airflow uniformity, stability, subsidence depth, and the spatial coverage ratio within the printing environment. Based on these results, this research provides quantitative assessments of the air curtain′s barrier effect and proposes design optimizations to establish a more stable and controllable enclosed bioprinting environment.
    Appears in Collections:[Executive Master of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML11View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明