本研究針對液壓驅動離合器系統進行系統化的建模、模擬與實驗驗證,重點分析液壓缸安裝配置下與容積大小對接合動態特性的影響。研究建立一套模擬實際沖床操作的實驗平台,整合壓力與行程感測器以獲取系統響應數據,作為模型驗證與參數辨識的依據。其中動態模型具備物理基礎,涵蓋壓力建立、活塞運動與蓄壓器補償等過程,並以 FESTO FluidSim 軟體進行模擬驗證。模擬結果與實測數據高度吻合,壓力誤差範圍為 0.13% 至 3.20%,行程時間誤差小於 0.02 秒。實驗顯示,液壓缸與蓄壓器可大幅提升系統反應速度,接合時間由 0.29 秒縮短至 0.06 秒,提升幅度達 79.3%。參數分析亦揭示容積大小與系統穩定性間之設計權衡,為元件最佳化提供技術依據。誤差分析指出,管路摩擦與結構彈性變形為主要誤差來源,此外,沖床中離合器系統與液壓泵之間的高度差亦造成壓力揚程損失,進一步導致壓力誤差。本研究提出一套具預測能力的動態模型,結合理論推導與實驗驗證,能作為節能型液壓控制、預測模型開發與智慧驅動系統設計的重要依據。;This study conducts systematic modeling, simulation, and experimental validation of a hydraulically actuated clutch system, with a focus on how the installation position and volume of the hydraulic cylinder affect engagement dynamics. An experimental platform simulating actual press operations was developed, integrating pressure and displacement sensors to capture system responses for model validation and parameter identification. The proposed dynamic model is physics-based, encompassing pressure buildup, piston motion, and accumulator compensation, and was verified using FESTO FluidSim simulations. The simulation results closely match experimental data, with pressure errors ranging from 0.13% to 3.20% and stroke time errors below 0.02 seconds. Experimental results show that incorporating a hydraulic cylinder and accumulator significantly improves system response speed, reducing engagement time from 0.29 seconds to 0.06 seconds—a 79.3% improvement. Parametric analysis further reveals a design trade-off between volume size and system stability, providing a technical reference for component optimization. Error analysis indicates that pipeline friction and structural elasticity are the primary sources of deviation. Additionally, the height difference between the clutch system and the hydraulic pump contributes to pressure head loss, further affecting pressure accuracy. The developed predictive dynamic model, validated by both theoretical analysis and experimental results, serves as a valuable foundation for energy-efficient hydraulic control, predictive model development, and intelligent actuation system design.