| 摘要: | 高品質的單層石墨烯已成為材料科學領域的重要需求.石墨烯的合成主要透過化 學氣相沉積法在多晶銅箔上進行, 後續藉由轉移技術轉至各種基板。然而,合成高品質的 單層石墨烯極具挑戰性並需受到多種參數影響,包括溫度、壓力、氣體流量比例和生長時 間。本研究專注於優化石墨烯在多晶銅箔上的 氣相沉積法生長,以實現高品質、高均勻 性和高重複性。我們在兩種條件下研究這些參數的影響: 常壓下(760 torr)和低壓下(20- 40 torr), 以獲得高品質石墨烯合成的優化參數。 從初始合成溫度 1060°C 開始, 已成功將常壓氣相沈積法的合成溫度降低至 950°C,而低壓氣相沈積法則降至 930°C。在這兩種條件下合成的石墨烯均以濕式轉移的方 式,轉移至 SiO₂/Si 基板上,方便觀察與分析。透過光學顯微鏡和拉曼光譜分析,可觀察 到在常壓氣相沈積法的條件下多層石墨烯二次成核的面積比例下降,而在低壓氣相沈積法 的條件下幾乎完全形成單層石墨烯。同時,透過四點探針與霍爾效應量測電性分析, 針對 優化後的石墨烯, 其片電阻至約 900 Ω/sq、載子遷移率(mobility)範圍為 1000~1500 cm 2/V·s,而載子濃度(carries concentration)在兩種壓力條件下皆測得為 6~8 × 10¹² /cm2。 依據上述優化多晶銅箔成長石墨烯的條件下,將低壓條件應用於單晶銅基板, 特別是 Cu(111)/藍寶石上。 Cu(111) 基板透過物理氣相沉積( PVD)在藍寶石基底上生長, 以獲得平整,均勻的單晶表面,從而減少基板表面對石墨烯合成的影響。在 Cu(111)/藍寶 石上合成的石墨烯隨後以真空平壓貼合結合電化學剝離法轉移至 SiO₂/Si 基板上。 透過光學顯微鏡、掃描式電子顯微鏡和原子力顯微鏡分析顯示,所得石墨烯表 面高品質且均勻,無明顯缺陷(如皺摺、不平整或破裂) ;拉曼光譜進一步證實單層石墨 烯的高品質, ID/IG 比值低於 0.1, I2D/IG 比值介於 1.5–2 之間。本研究為 CVD 生長石墨 烯的品質與均勻性控制提供了更好的方法,推動其在未來電子應用中的發展。;High-quality single-layer graphene has become a critical need in the materials science industry. Graphene synthesis is predominantly performed using chemical vapor deposition (CVD) on polycrystalline Cu foils, followed by transfer onto various substrates. However, synthesizing highquality single-layer graphene is highly challenging and depends on several parameters, including temperature, pressure, gas flow composition, and growth time. This study focuses on optimizing the CVD growth of graphene on Cu to achieve high quality and reliability. We investigate the influence of these parameters under two conditions: Atmospheric Pressure CVD (APCVD) and Low-Pressure CVD (LPCVD), aiming to derive an optimized recipe for high-quality graphene synthesis. From the initial synthesis temperature of 1060°C, we successfully reduced the synthesis temperature to 950°C under APCVD and 930°C under LPCVD. The resulting graphene in both cases was wet-transferred onto SiO₂/Si wafers. Using optical microscopy (OM) and Raman spectroscopy, we observed a significant reduction in multilayer graphene under APCVD conditions and near-complete single-layer graphene formation under LPCVD. Furthermore, the graphene′s sheet resistance was optimized to approximately 800–1000 Ω/sq, as measured using a four-point probe and Hall measurements. Carrier mobility values ranged from 1000–1500 cm²/V·s, and carrier concentration was measured at 6–8 × 10¹²/cm² in both pressure conditions. After optimizing the synthesis recipe for polycrystalline Cu foils, we applied the low-pressure conditions to single-crystal Cu substrates, specifically Cu(111)/sapphire. The Cu(111) substrate was grown on a sapphire base using Physical Vapor Deposition (PVD) to achieve a flat, uniform single-crystal surface, minimizing surface-related effects on graphene synthesis. Graphene synthesized on Cu(111)/sapphire was subsequently transferred onto SiO₂/Si wafers using Vacuum Lamination (VL) combined with Electrochemical (EC). OM, SEM, and AFM revealed a high-quality, uniform surface free from defects (wrinkles, corrugations, or ruptures). Raman spectroscopy further confirmed the high quality of the singlelayer graphene, with an ID/IG ratio below 0.1 and an I2D/IG ratio of 1.5–2. This work paves the way for better control over the quality and uniformity of CVD-grown graphene, advancing its potential for future electronic applications |