中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98617
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56306658      Online Users : 1060
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98617


    Title: 啟用基於 SRAM 的加法器以加速 GNN 聚合;3ACiM : Enabling SRAM-based Adder to Accelerate GNN Aggregation
    Authors: 李宗奇;Li, Zong-Chi
    Contributors: 資訊工程學系
    Keywords: 圖神經網路;可程式閘陣列;靜態隨機存取記憶體;加法器;Graph Neural Network;Field-Programmable Gate Array;Static Random-Access Memory;Adder
    Date: 2025-08-27
    Issue Date: 2025-10-17 13:00:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Graph Neural network被廣泛運用在非歐幾里得數據上,FPGA在硬體電路上的彈性框架,以及SRAM相對較低的耗電適合執行accelertor.過去的研究沒有很好的利用了GNN資料的低依賴度這個特性。在我們的研究中,我們設計了一種SRAM架構,專門處理GNN aggregation的步驟,並透過GNN資料低依賴性的特點,設計了一種基於資料集度數的排程演算法,有效的減少GNN在aggregation中的總操作次數,並同步減少資料在SRAM中經常被搬移而造成的開銷。我們的實驗表明在SRAM adder上,擁有比較好的執行速度,並減少了整體功耗。;Graph Neural Networks (GNNs) have been widely applied to non-Euclidean data structures such as social and molecular graphs. Field-Programmable Gate Arrays (FPGAs), with their flexible hardware configuration and low-power SRAM design, provide an energy-efficient platform for GNN acceleration. However, prior works have not fully exploited the inherent low inter-node dependency in GNN datasets. In this work, we propose a novel SRAM-based architecture tailored for the aggregation phase of GNNs. Leveraging the low dependency property of graph data, we design a degree-aware scheduling algorithm that significantly reduces redundant aggregation operations and minimizes data movement overhead within SRAM. Experimental results show that our FPGA-based SRAM adder achieves faster execution and reduced overall energy consumption compared to baseline designs.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML4View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明