中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98621
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83696/83696 (100%)
Visitors : 56349510      Online Users : 674
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98621


    Title: 農業空拍地塊影像之錯誤標註資料偵測與校正;Mislabel Detection And Correction in Agricultural Aerial Image Parcel
    Authors: 林金龍;BUANA, CHRISTOPHER ALVIN
    Contributors: 資訊工程學系
    Keywords: One keyword per line;標籤錯誤檢測;空拍影像;農業分類;One keyword per line;Mislabel detection;aerial imagery;Agricultural classification.
    Date: 2025-08-27
    Issue Date: 2025-10-17 13:01:06 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在農業空拍影像辨識中,高品質的資料集(例如精確標註的空拍地塊資料)對
    於達成可靠的模型效能與評估至關重要。先前的研究 [1] 主要聚焦於空拍影像中的異
    常值偵測,但也發現其在測試階段能有效辨識錯誤標註的地塊。然而,當面對刻意錯
    誤標註的樣本時,該方法無法偵測到其中相當大部分的案例,顯示其在錯誤標註資料
    偵測上的魯棒性存在限制。此外,農業影像分類常涉及由多個外觀相似的子類別所組
    成的類別,這種特性會對深度學習模型正確分類單一地塊造成負面影響。
    為了應對這些挑戰,本研究提出一種新的基於特徵的錯誤標註偵測方法,以提
    升農業空拍影像的分類效能。受到異常值偵測技術的啟發,我們的方法結合了 Weibull
    分佈建模與深度特徵擷取 [1]。我們首先從預訓練模型中擷取深度特徵,接著進行物理
    表示分析,以揭示特徵空間中的結構性不一致。之後,我們應用一個資料淨化流程,
    透過過濾疑似錯誤標註的樣本來精煉資料集。最後,藉由使用 Weibull 分佈來統計建
    模特徵分佈的尾部,使得異常或錯誤標註資料的識別更加有效。
    實驗結果顯示,所提出的方法不僅能與現有的錯誤標註偵測技術競爭,且在 召回率 與
    精確率 上於空拍地塊資料集及細粒度的 CUB-200-2011 資料集皆取得更優異的表現。;In agricultural aerial image recognition, high-quality datasets such as accurately la-
    beled aerial imagery parcel data are important to achieve reliable model performance and
    evaluation. Previous research [1] mainly focused on outlier detection in aerial imagery, but
    it was also found to be effective in identifying mislabeled parcels during testing. How-
    ever, when tested with intentionally mislabeled samples, the method failed to detect a
    significant portion of these cases, highlighting limitations in its robustness for mislabel
    detection. Moreover, agricultural image classification often involves classes composed of
    visually similar subclasses, which can negatively impact deep learning models’ability to
    correctly classify individual parcels.
    To address these challenges, this study proposes a new feature based mislabel de-
    tection approach aimed at improving classification performance in agricultural aerial im-
    agery. Inspired by outlier detection techniques, our method leverages Weibull distribution
    modeling and deep feature extraction [1]. We begin by extracting deep features from a
    pre-trained model, followed by a physical representation analysis to uncover structural in-
    consistencies within the feature space. A purification process is then applied to refine the
    dataset by filtering out suspected mislabeled samples. Finally, the Weibull distribution is
    utilized to statistically model the tails of the feature distribution, enabling more effective
    identification of anomalous or mislabeled data. Experimental results demonstrate that the
    proposed method not only competes with existing mislabel detection techniques but also
    achieves superior performance in terms of recall and precision on both an aerial image
    parcel dataset and the fine-grained CUB-200-2011 dataset
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML4View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明