English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 58176594      線上人數 : 5022
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98624


    題名: 應用深度學習於微型軸承量測主軸之振動值預測與異常分類研究
    作者: 廖國宏;Liao, Kuo-Hung
    貢獻者: 機械工程學系在職專班
    關鍵詞: 軸承;軸頸軸承;振動檢測;深度學習;機器學習;Bearing;Journal Bearing;Vibration Detection;Deep Learning;Machine Learning
    日期: 2025-07-28
    上傳時間: 2025-10-17 13:01:18 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究所設計之主軸專為微型軸承與小徑軸承量測應用,透過振動感知器監控軸
    承運行情況。測試過程中將待測軸承安裝於主軸軸心並施加適當推力載荷,以獲取軸
    承運轉時之振動數據。該主軸結構類似軸頸軸承,並搭配Turbine Oil No.56 作為潤滑
    介質。隨著運行時間增加,軸心、銅襯間之磨耗將導致振動值上升,進而影響量測準
    確性。
    本研究提出三種建模策略以預測主軸振動值並進行良品與不良品判別。方法一以
    振動值反向預測配合間隙,因特徵過於單一,模型表現不佳,測試 R2 多為負值。方
    法二改以幾何尺寸與表面粗糙度等數值特徵預測振動值,表現顯著提升,MLP 模型測
    試 R2 可達 0.493。方法三進一步結合 ResNet101 擷取之圖像特徵與數值資料,建構
    多模態模型,整體表現穩定,但高維特徵導致部分模型產生過擬合,第一層預測趨於
    一致,限制堆疊效果。進一步將圖像特徵降維後,雖抑制過擬合,但預測能力同步下
    降。
    分類方面,模型多能穩定辨識良品,但不良品 Recall 偏低,受限於樣本不平衡與
    邊界樣本比例過高。整體而言,融合圖像與數值特徵有助提升振動預測能力,未來可
    從特徵選擇、資料擴增與不平衡學習進行優化,以強化缺陷辨識與實務應用效能。;The spindle developed in this study is designed for measuring miniature and smalldiameter
    bearings. A vibration sensor monitors the bearing’s condition during testing, where
    the bearing is mounted on the spindle shaft under thrust load to collect vibration data. The
    spindle resembles a journal bearing and uses Turbine Oil No.56 for lubrication. Over time,
    wear between the shaft and copper bushing increases vibration, affecting measurement
    accuracy.
    Three modeling strategies are proposed to predict spindle vibration and classify product
    quality. Method 1 uses vibration to inversely predict clearance but performs poorly due to
    limited input features, yielding mostly negative test R2 values. Method 2 predicts vibration
    using numerical features like geometry and surface roughness, showing notable improvement
    with MLP reaching a test R2 of 0.493. Method 3 combines ResNet101-extracted image
    features with numerical data to build a multimodal model. Performance remains stable,
    though high-dimensional features lead to overfitting and similar outputs from first-layer
    models, limiting stacking effectiveness. Dimensionality reduction mitigates overfitting but
    reduces predictive power.
    For classification, models reliably identify good samples, but defective recall remains
    low due to data imbalance and borderline cases. Overall, combining image and numeric
    features improves vibration prediction. Future work may enhance defect detection through
    feature selection, data augmentation, and imbalanced learning.
    顯示於類別:[機械工程學系碩士在職專班 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML5檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明