English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 59502423      線上人數 : 745
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98699


    題名: 2022年冬季斗六市及2023年春季鹿林山與臺中市氣膠化學成分特徵及鹿林山歷年特徵比值變化;Chemical Composition Characteristics in Aerosols at Douliu City in Winter 2022, and Mt. Lulin and Taichung City in Spring 2023, and Long-term Changes in Chemical Composition Ratios in Aerosols at Mt. Lulin
    作者: 賴尚豪;Lai, Shang-Haow
    貢獻者: 環境工程研究所
    關鍵詞: 高山與都市;PM2.5化學成分特徵;水溶性無機離子組成方式;生質燃燒;High mountain and urban city;PM2.5 chemical characteristics;Compound forms of Water-soluble inorganic ions;Biomass burning
    日期: 2025-07-30
    上傳時間: 2025-10-17 13:05:51 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文採集2022年冬季斗六市與2023年春季鹿林山和臺中市氣膠並分
    析的PM2.5水溶性無機離子及碳成分,彙整鹿林山歷年氣膠濃度和化學成
    分變化趨勢。
    鹿林山受到生質燃燒煙團傳輸影響,臺中市和斗六市受到相對較大
    的交通排放影響。臺中市與斗六市的NO3-高濃度,於日間及夜間時段,
    推論分別來自交通排放、光化學反應及NOx轉化或N2O5水解。PM2.5主
    要水溶性無機離子結合型態,鹿林山、臺中市、斗六市大氣硫酸鹽都以
    (NH4)2SO4為主,鹿林山和臺中市大氣硝酸鹽以NH4NO3為主,斗六市以
    N2O5水解和形成HNO3為主。使用ISORROPIA II模式模擬,三地大氣硫
    酸鹽和硝酸鹽都以(NH4)2SO4和NH4NO3為主。春季鹿林山、臺中市及冬
    季斗六市三地量化推算後的結合型態,三地都以 (NH4)2SO4為主,
    NH4NO3為次。以High EC Edge方法推估三地PM2.5有機碳都以一次有機
    碳為主。使用 Revised IMPROVE 公式推估鹿林山以有機物和元素碳為主,
    臺中市以硝酸銨和硫酸銨為主,冬季斗六市則以硝酸銨和有機物為主,
    推論主要分別受BB、工業排放、交通排放影響。以多項特徵比和大氣消
    光係數,推論歷年秋季鹿林山普遍受到固定污染源燃煤燃燒影響,部分
    年份受BB影響,歷年春季鹿林山受BB影響大,其次是燃煤影響。;This study collected aerosol samples from Douliu City during the winter
    of 2022 and from Lulin Mountain and Taichung City during the spring of 2023
    to analyze the water-soluble inorganic ions and carbonaceous components of
    PM2.5 In addition, it compiled long-term variation trends in aerosol
    concentration and chemical composition at Lulin Mountain.
    Lulin Mountain was influenced by the long-range transport of biomass
    burning plumes, while Taichung City and Douliu City were relatively more
    affected by traffic emissions. The high concentrations of NO3⁻ observed in
    Taichung and Douliu during both daytime and nighttime suggest sources from
    traffic emissions, photochemical reactions, and NOX conversion or N2O5
    hydrolysis. Regarding the major combinations of water-soluble inorganic ions
    in PM2.5, sulfate in the atmosphere of all three locations—Lulin, Taichung, and
    Douliu—was primarily in the form of (NH4)2SO4. Nitrate appeared mainly as
    NH4NO3 in Lulin and Taichung, while in Douliu, it was largely associated with
    N2O5 hydrolysis and the formation of HNO3 droplets. Simulations using the
    ISORROPIA II model indicated that both sulfate and nitrate existed
    predominantly as (NH4)2SO4 and NH4NO3 at all three sites. The High EC Edge
    method estimated that primary organic carbon was the dominant component of
    PM2.5 organic carbon at all three locations. Using the Revised IMPROVE
    algorithm, the dominant PM2.5 components were found to be organic matter
    and elemental carbon at Lulin, ammonium nitrate and ammonium sulfate at
    Taichung, and ammonium nitrate and organic matter in Douliu during winter.
    These results suggest primary influences from biomass burning, industrial
    emissions, and traffic emissions, respectively. By using multiple characteristic
    ratios and aerosol light extinction coefficients, the analysis inferred that in most
    years during autumn, Lulin Mountain was generally affected by coal
    combustion from stationary pollution sources, with BB influences observed in
    certain years. In spring, biomass burning was the dominant influence at Lulin
    Mountain, followed by coal combustion.
    顯示於類別:[環境工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML33檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明