English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60705212      線上人數 : 893
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98704


    題名: 新穎陽極觸媒披覆之多孔傳輸層用於陰離子交換膜水電解產氫之研究;Investigation of Novel Anode Catalyst-Coated Porous Transport Layers for Hydrogen Production via Anion Exchange Membrane Water Electrolysis
    作者: 蕭健宇;Hsiao, Jian-Yu
    貢獻者: 機械工程學系
    關鍵詞: 陰離子交換膜水電解器;自支撐型觸媒;多孔傳輸層;減薄流道;短電堆;Anion exchange membrane water electrolyzer;self-supported catalysts;porous transport layer;thinned flow field;short stack
    日期: 2025-07-23
    上傳時間: 2025-10-17 13:06:05 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在探討陰離子交換膜水電解器之陽極結構對陰離子交換膜水電解器性能之影響,藉以提升其於高電流密度操作下之電化學活性與氣液傳輸效率,分別探討不同自支撐型觸媒、不同陽極多孔傳輸層、不同陽極多孔傳輸層層數與流道設計於單電池端的應用,最終以單電池優化結果進行三電池串聯之短電堆組裝。實驗結果顯示,鎳鐵錳三元金屬之觸媒於70 °C 與2.0 V 操作條件下電流密度達1908.9 mA/cm²,相較未披覆觸媒之發泡鎳基材提升140%。多孔傳輸層材料中以鎳網表現最佳,因其均勻孔洞與良好導電性可有效促進氣體逸出與反應進行,於70 °C 與2.0 V操作條件下電流密度達2467.8 mA/cm²。進一步比較多孔傳輸層單層與雙層結構,其中雙層堆疊將導致氣泡滯留反而降低水電解器性能,於70 °C 與2.0 V 操作條件下電流密度僅達 2093.8mA/cm²。此外,減薄流道設計以單層發泡材流道取代雙層配置,與原始流道設計保有相當之性能,於70 °C 與2.0 V 操作條件下電流密度達 2417.6mA/cm²,其可減少水電解器之體積,但於電化學阻抗分析與弛緩時間分佈分析中可發現阻抗組成之不同。最終將單電池優化結果應用在三電池串聯短電堆中,於80 °C 與6.0 V 操作條件下達電流密度1996.2 mA/cm²。;This study aims to investigate the effect of anode structure on the performance of anion exchange membrane water electrolyzers (AEMWEs), to enhance electrochemical activity and gas-liquid transport efficiency under high current density operation. The research explores the application of different self-supported catalysts, various anode porous transport layer (PTL) materials, single-layer versus double-layer PTL configurations, and flow field designs in singlecell setups. Ultimately, the optimized single-cell configuration was applied to assemble a short stack consisting of three cells in series. Experimental results show that the trimetallic NiFeMn catalyst achieves a current density of 1908.9 mA/cm² at 70°C and 2.0 V, representing a 140% improvement over the bare nickel foam substrate. Among the PTL materials, nickel mesh demonstrates the best performance due to its uniform pore structure and good electrical conductivity, which effectively facilitates gas
    release and reaction kinetics, reaching a current density of 2467.8 mA/cm² under the same conditions. Further comparison between single-layer and double-layer PTL structures indicates that the latter leads to bubble accumulation, thereby reducing electrolyzer performance, with a current density of only 2093.8 mA/cm² at 70°C and 2.0 V. Additionally, a thinned flow field design using a single-layer foam material to replace the dual-layer configuration maintains comparable performance to the original flow field, achieving a current density of 2417.6 mA/cm² at 70 °C and 2.0 V. This approach offers the advantage of reducing the overall volume of the electrolyzer. However, electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed differences in impedance composition. Finally, the optimized single-cell design was applied to a three-cell short stack, which achieved a current density of 1996.2 mA/cm² at 80°C and 6.0 V.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML8檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明