| 摘要: | 隨著半導體製程技術持續邁向奈米乃至埃米等級,製程對薄膜沉積與蝕刻精準度的要求日趨嚴苛,特別是在電漿驅動相關製程中,電源供應器的性能與穩定性已成為提升良率與製程控制關鍵能力的核心。本研究以「半導體製造設備(Wafer Fab Equipment, WFE)」中所使用之精密電源技術為主軸,針對其技術創新趨勢與專利佈局進行系統性分析,並聚焦於三大核心製程技術——物理氣相沉積(PVD)、化學氣相沉積(CVD)與蝕刻(Etching)——所倚賴之電源應用。 本論文旨在達成四大研究目標:(一)釐清技術需求隨製程微縮演進之變化趨勢;(二)解析主要技術供應商的專利策略與研發方向;(三)比較廠商間專利組合的技術優劣勢;(四)揭示未來潛在之關鍵技術發展方向。本研究選定四家國際具代表性的電源廠商進行比較分析,分別為 Advanced Energy(AE)、TRUMPF Hüttinger(TRUMPF)、MKS Instruments(MKS)以及台達電子(Delta Electronics)。資料來源涵蓋2005年至2024年間美國、歐洲、台灣、中國、日本與南韓等主要專利市場,經由文獻回顧建立關鍵詞庫,並以IPC分類(如 H01J 37/32、H05H 1/46)進行檢索與交叉比對,選取代表性IPA核心專利進行深入剖析。 研究發現,當前電源技術創新已由傳統直流(DC)架構向脈衝直流(Pulsed DC)及射頻(RF)架構進化,並導入精緻化控制機制以因應製程的複雜性與變動性。發展焦點包含:高階脈衝調變(如Pulse Shaping、Multi-level Pulsing)、極速阻抗匹配(如頻率捷變、固態匹配)及整合人工智慧與機器學習(AI/ML)之智慧化控制系統等,以因應原子層沉積/蝕刻(ALD/ALE)與高深寬比(HAR)結構製程的挑戰。 專利佈局方面,AE展現其在RF功率控制與系統整合(NavX™、eVoS™)上的領先地位;TRUMPF則以高穩定輸出與智慧頻率調諧為發展核心(如CombineLine™與CompensateLine);MKS透過策略性併購與「Surround the Chamber®」整合策略,建構全方位子系統解決方案;而台達電子則憑藉其於電力電子與散熱管理領域之深厚技術,積極進軍半導體製程電源市場,展現成為潛力挑戰者的態勢。 綜合分析結果顯示,未來半導體製程電源技術將朝向更高精度、更快速響應、更高控制自由度以及智慧化整合發展。競爭優勢將不再侷限於單一硬體性能,而是轉向系統解決能力、製程整合程度與智慧運算支援的全面比拚。本研究之發現可提供產業界於技術研發與專利策略制訂上具體之參考依據。 ;As semiconductor manufacturing continues to advance toward nanometer and even angstrom-level nodes, the demands for precision in film deposition and etching processes have intensified. In plasma-based processes, the performance and stability of power supply units (PSUs) have become vital to achieving high yields and precise process control. This study investigates the technological innovation trends and patent landscape of precision power supply systems used in wafer fabrication equipment (WFE), with a focus on their applications in three core processes: physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching. The research aims to: (1) identify how technology requirements evolve with process scaling; (2) analyze the patent strategies of major PSU suppliers; (3) compare technical strengths and weaknesses across firms; and (4) reveal emerging trends in power supply innovation. Four representative companies—Advanced Energy (AE), TRUMPF Hüttinger (TRUMPF), MKS Instruments (MKS), and Delta Electronics—were selected for comparative study. Patent data from 2005 to 2024 across the US, EU, Taiwan, China, Japan, and South Korea were examined using IPC codes (e.g., H01J 37/32, H05H 1/46) and refined keyword mapping to extract and analyze core IPA patents. Findings show that PSU technologies have transitioned from conventional DC systems to pulsed DC and RF architectures, emphasizing greater precision and adaptability. Innovation is centered on advanced pulsing (e.g., pulse shaping, multi-level pulsing), ultra-fast impedance matching (e.g., frequency agility, solid-state matching), and AI/ML-driven digital control to support atomic layer processing (ALD/ALE) and high aspect ratio (HAR) structures. AE leads in RF power control and system integration (e.g., NavX™, eVoS™); TRUMPF focuses on stable outputs and adaptive frequency tuning (e.g., CombineLine™, CompensateLine); MKS employs its “Surround the Chamber®” strategy to deliver integrated subsystems; while Delta, leveraging its expertise in power conversion and thermal management, is positioning itself as a rising player in semiconductor PSUs. In conclusion, next-generation PSU development is moving toward higher precision, faster response, greater control flexibility, and intelligent system integration. Future competition will extend beyond hardware performance to include holistic solutions and process-level optimization. This research offers practical insights for industry stakeholders in formulating R&D directions and patent strategies. |