中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98717
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 60044220      Online Users : 937
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98717


    Title: 基於可重構積層製造輔助精密鑄造之三重週期最小曲面結構的可調式吸能性能研究;Adjustable energy absorption of triply periodic minimal surface structures via additively reconfigurable manufacturing-based investment casting
    Authors: 高嘉佑;Kao, Chia-Yu
    Contributors: 機械工程學系
    Keywords: 三重週期最小曲面;可調式吸能性能;積層製造;可重構式設計;精密鑄造;Triply periodic minimal surface;Adjustable energy absorption;Additive manufacturing;Reconfigurable design;Investment casting
    Date: 2025-07-28
    Issue Date: 2025-10-17 13:08:32 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 三重週期極小曲面(TPMS)結構具有連續且平滑的幾何特徵,能夠提供優異的設計彈性,廣泛應用於力學強化與能量吸收等應用。儘管金屬積層製造目前為製作 TPMS 結構的主流技術,卻面臨高成本、尺寸限制與難以實現高密度結構等挑戰,限制了在大尺寸工程應用之發展潛力。為了解決上述問題,本研究提出一種結合 3D 列印PLA模型與精密鑄造的模組化製程,用以製作Schwarz Primitive型 TPMS 結構,並成功製作出六種不同壁厚與單元排列組合的結構。實驗結果顯示,壁厚的增加可顯著提升結構的降伏強度、彈性模數與單位體積吸收能(Wd),其中C33-T20樣品達到最高吸收能量(65.2 MJ/m³),而C33-T15樣品則具有最高比能量吸收(SEA = 19.9 J/g)。進一步比較 SEA 與密度關係可發現,在中高密度範圍(1.8-3.5 g/cm³)下,本文所製作的模組化TPMS結構在能量吸收效能上優於傳統晶格架構與不銹鋼金屬泡沫(S-S CMF),並可透過調整結構壁厚實現可調式吸能設計。本研究所提出的模組化框架不僅具備可重構與可替換性,更克服了傳統精密鑄造對於複雜互連結構的幾何限制,展現出一條可擴大規模、具成本效益的高性能吸能元件結構的製造方案,適用於各類工程應用場景。;Structures with triply periodic minimal surfaces (TPMS) are characterized by continuous and smooth geometries, providing design versatility well-suited for mechanical enhancement and energy dissipation functions. However, although metal additive manufacturing (AM) is the dominant approach for fabricating TPMS structures, it faces significant challenges in large-scale applications due to high costs, size limitations, and difficulties in achieving high-density structures. To overcome these limitations, this study proposes a modular investment casting strategy using 3D-printed PLA patterns to fabricate Schwarz Primitive TPMS structures. Six configurations with different wall thicknesses and unit cell counts were successfully produced. Experimental results demonstrated that increasing the wall thickness significantly enhanced the yield strength, elastic modulus, and absorption energy (Wd), with C33-T20 exhibiting the highest absorption energy of 65.2 MJ/m³. In contrast, the C33-T15 specimen showed the highest mass-specific SEA of 19.9 J/g. Further contextualizing the mechanical performance, a comparison of SEA–density profiles revealed that the modular TPMS structures not only outperform conventional lattice topologies and stainless-steel cellular metal foams (S–S CMFs) at higher densities (1.8–3.5 g/cm³), but also offer tunable energy absorption behavior simply by adjusting wall thickness. The proposed modular framework offers not only reconfigurability and replaceability but also overcomes the geometric limitations of traditional casting in producing complex, interconnected structures. This work demonstrates a scalable and cost-effective pathway for manufacturing high-performance energy-absorbing components in engineering applications.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML19View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明