| 摘要: | 本研究提出了一種創新的三維自供能火警感測系統,該系統結合了近場電紡絲技術(NFES)、三重周期最小表面(TPMS)結構及阻燃性 TA-MXene(Ti₃C₂Tx)多層薄膜,旨在開發一款具備高效火災警告和持久運行能力的感測器。具體而言,PVDF-TrFE 奈米纖維被整齊地排列於彎曲的 TPMS 表面,並通過銅膠帶固定,隨後用PDMS封裝形成壓電納發電機(PENG),並通過串聯連接提升其輸出效率。與傳統的 MXene/PVP 複合材料相比,TA-MXene 薄膜展示了顯著的阻燃性、更快的響應速度(<1.5 秒對比 ~3 秒),以及優越的抗氧化性,這一性能提升主要歸因於在 TA 功能化過程 本研究的兩個關鍵創新如下。首先,將 TA-MXene 和 PVDF-TrFE 奈米纖維嵌入 TPMS 結構中,不僅提供機械緩衝作用,還進一步增強了系統的電壓輸出。其次,對多層 TA-MXene 堆疊結構的系統分析顯示,三層 TA-MXene 並聯配置能在阻燃效果佳及響應時間快速且穩定達到最佳平衡,進一步提升系統的實用性。此外,為了進一步優化感測輸出,研究中採用了 TPMS 結構,其中 10% 相對密度變體在經歷大變形的情況下仍能提供最佳性能,同時保持結構完整性。這些結果展示了材料與結構的協同整合,並為開發高性能、柔性及自供能的火災偵測系統提供了一條有前景的發展途徑。 ;This study presents an innovative three-dimensional self-powered fire sensing system that integrates Near-Field Electrospinning (NFES), triply periodic minimal surface (TPMS) structures, and flame-retardant TA-MXene (Ti₃C₂Tx) multilayer films, aimed at developing a sensor with high-efficiency fire warning and sustained operational capabilities. Specifically, PVDF-TrFE nanofibers are neatly aligned on curved TPMS surfaces, secured with copper tape, and then encapsulated in PDMS to form a piezoelectric nanogenerator (PENG), with output efficiency enhanced through series connection. Compared to conventional MXene/PVP composites, TA-MXene films demonstrate significant flame retardancy, faster response time (<1.5 s vs ~3 s), and superior oxidation resistance, which is primarily attributed to the formation of a carbon/nitrogen-doped TiO₂ protective layer during the tannic acid functionalization process. Two key innovations support this work. First, embedding TA-MXene and PVDF-TrFE nanofibers into the TPMS structure provides mechanical buffering and further enhances the system’s voltage output. Second, a systematic analysis of the multilayer TA-MXene stacking structure shows that the three-layer TA-MXene parallel configuration optimizes flame retardancy and achieves a rapid, stable response time, further enhancing the system′s practicality. Additionally, to further optimize the sensing output, TPMS structures with a 10% relative density variant were employed, delivering peak performance under large deformation while maintaining structural integrity. These results demonstrate the synergistic integration of materials and structures and offer a promising pathway for the development of high-performance, flexible, and self-powered fire detection systems. |