中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98732
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 60692254      Online Users : 1010
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98732


    Title: 基於單視角視覺與深度學習之羽球員姿態分析系統;Badminton Player Posture Analysis System Based on Monocular Vision and Deep Learning
    Authors: 劉昕倫;Liu, Hsin-Lun
    Contributors: 機械工程學系
    Keywords: 單視角視覺;人體姿態估測;深度學習;動作辨識;大型語言模型;提示工程;運動科學;Monocular Vision;Human Pose Estimation;Deep Learning;Action Recognition;Large Language Model;Prompt Engineering;Sports Science
    Date: 2025-08-01
    Issue Date: 2025-10-17 13:11:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文設計一套結合單視角視覺偵測、三維人體姿態估測、動作辨識與語言生成模型之羽球員姿態分析與評分系統,目標為提供球員一個全面、客觀且個人化的技術評估工具。系統核心以MediaPipe Pose擷取人體3D骨架資訊,並建立多項姿態分析指標,包含:揮拍動作期間手腕與雙腳的三維軌跡路徑、手部關節的夾角變化、揮拍速度、拍面方向、步伐數量以及依據人體質量比例分佈計算之身體重心位移,藉此從不同面向去量化羽球員的運動表現。為辨識不同擊球動作,本研究提出一個融合空間與時序注意力機制之Transformer架構,能同時捕捉關節間的空間連動特性與揮拍動作中各關節在時間上的連續性與關聯性,實現多種羽球擊球動作之分類任務。此外,為提升使用者互動體驗與回饋解釋性,本研究亦導入大型語言模型(Large Language Model, LLM)至姿態評分系統中,透過提示工程(Prompt Engineering)的方式提供更專業與更全面之訓練建議。並開發適用於手機作業系統的應用程式介面,透過結合Google Cloud Storage雲端儲存平台實現前後端資料傳輸,讓使用者得以透過行動裝置上傳影片並取得自動化分析結果,實現簡單、快速的分析流程。經過測試後,本研究所設計之動作辨識模型辨識準確率達93%,評分系統能夠針對球員在揮拍過程中的各項動作表現進行分析並提供個人化的訓練建議,為羽球訓練提供一套完善的分析工具,對於個人訓練或是運動科學領域皆具有良好的研究潛力。本論文設計一套結合單視角視覺偵測、三維人體姿態估測、動作辨識與語言生成模型之羽球員姿態分析與評分系統,目標為提供球員一個全面、客觀且個人化的技術評估工具。系統核心以MediaPipe Pose擷取人體3D骨架資訊,並建立多項姿態分析指標,包含:揮拍動作期間手腕與雙腳的三維軌跡路徑、手部關節的夾角變化、揮拍速度、拍面方向、步伐數量以及依據人體質量比例分佈計算之身體重心位移,藉此從不同面向去量化羽球員的運動表現。為辨識不同擊球動作,本研究提出一個融合空間與時序注意力機制之Transformer架構,能同時捕捉關節間的空間連動特性與揮拍動作中各關節在時間上的連續性與關聯性,實現多種羽球擊球動作之分類任務。此外,為提升使用者互動體驗與回饋解釋性,本研究亦導入大型語言模型(Large Language Model, LLM)至姿態評分系統中,透過提示工程(Prompt Engineering)的方式提供更專業與更全面之訓練建議。並開發適用於手機作業系統的應用程式介面,透過結合Google Cloud Storage雲端儲存平台實現前後端資料傳輸,讓使用者得以透過行動裝置上傳影片並取得自動化分析結果,實現簡單、快速的分析流程。經過測試後,本研究所設計之動作辨識模型辨識準確率達93%,評分系統能夠針對球員在揮拍過程中的各項動作表現進行分析並提供個人化的訓練建議,為羽球訓練提供一套完善的分析工具,對於個人訓練或是運動科學領域皆具有良好的研究潛力。;This thesis presents the development of badminton player posture analysis and evaluation system that integrates monocular vision, 3D pose estimation, action recognition and Large Language Model (LLM). The goal is to provide players with a comprehensive, objective and personal tool for technical assessment. The system uses MediaPipe Pose to extract 3D skeleton data and defines multiple pose analysis indicators, including 3D trajectory of wrist and feet, joint angle variation in the hand, swing speed, step count and center of gravity displacement calculated based on human mass distribution. These indicators enable multi-faceted evaluation of athletic performance. To classify various badminton strokes, a Transformer-based model incorporating spatial and temporal Self-attention mechanisms is proposed, effectively capturing both joint-level coordination and sequential motion dynamics. To improve user experience and feedback clarity, we integrates an LLM in the assessment system, using prompt engineering to generate professional training suggestions. In addition, A mobile application integrated with Google Cloud Storage allows users to upload videos and receive analysis results, creating an efficient analysis workflow. The action recognition model achieved 93% accuracy, while the assessment system effectively evaluates player’s performance and offers personalized training suggestions. This thesis proposes a comprehensive posture analysis system for badminton players, which demonstrates strong potential for applications in both individual training and sports science research.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML29View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明