English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60695523      線上人數 : 877
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98738


    題名: 化學氣相沉積法合成可控陣列二硫化鉬及元件特性之研究;Study on the Synthesis of Controllable Molybdenum Disulfide Arrays by Chemical Vapor Deposition and Device Characterization
    作者: 蕭皓謙;HSIAO, HAO-CHIEN
    貢獻者: 機械工程學系
    關鍵詞: 二硫化鉬;化學氣相沉積;MoS2;CVD
    日期: 2025-08-12
    上傳時間: 2025-10-17 13:13:31 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,隨著元件微縮與先進製程整合需求日益提升,傳統矽基材料逐漸面臨短通道效應、載子遷移率衰退及介面散射增強等物理限制,而二維材料因具原子層級厚度、優異電性與能帶調控,逐漸成為新世代半導體材料的研究重點,其中二硫化鉬(MoS2)為典型的過渡金屬二硫屬化物,單層MoS2具穩定晶體結構與約1.8 eV的直接能隙,兼具高開關比、低漏電與穩定電性,在邏輯電路、光電器件與感測元件等應用展現潛力,然若欲實際導入現有半導體製程,仍需克服合成過程中出現的隨機成核、晶體尺寸不一、層數不均與轉印缺陷等問題,因此,如何實現在絕緣基板上高品質且具位置控制能力的單層材料成長,成為當前二維材料整合應用的技術關鍵。本研究提出一種以金點陣列為成核模板的可控陣列化化學氣相沉積製程,透過紫外光雷射微影定義金點圖案,結合單側封閉式石英內管與碳布遮罩調控前驅物釋放與氣體流場穩定性,有效提升晶體尺寸一致性與成核定位精度。
    在材料驗證方面,結合光學顯微鏡、拉曼光譜、光致發光(PL)、二次諧波(SHG)與原子力顯微鏡(AFM)等方法,證實所成長之單層MoS2晶體具有對稱形貌、原子級厚度與強烈非線性光學響應,展現良好結晶性與面內一致性,後續製作之背閘式場效電晶體於不同閘壓下展現穩定的n型導通行為,元件關態電流低於10 pA,開關電流比達106,場效遷移率可達12.54 cm²/V·s,顯示通道品質與金屬接觸關係良好,整體導電與調控能力穩定。本研究亦針對光阻與金點移除進行評估,透過元素分析與光譜比對確認蝕刻不影響晶體結構,展現材料保護性與製程相容性。本研究成功建構一套具位置控制性與尺寸一致性的MoS2陣列化成長製程,並驗證其於元件整合與特性調控上的可行性,為未來二維材料應用於次奈米節點邏輯電路與異質整合製程提供實用的技術基礎。
    ;In recent years, as the demands for device miniaturization and advanced process integration continue to grow, conventional silicon-based materials have faced increasing physical limitations, including aggravated short-channel effects, reduced carrier mobility, and enhanced interface scattering. Two-dimensional (2D) materials, owing to their atomic-scale thickness, excellent electrical properties, and tunable band structures, have emerged as promising candidates for next-generation semiconductor technologies. Among them, molybdenum disulfide (MoS2), a representative transition metal dichalcogenide (TMD), exhibits a stable hexagonal lattice structure and a direct bandgap of approximately 1.8 eV, along with high on/off current ratios, low leakage currents, and good mechanical and thermal stability, making it highly attractive for logic circuits, optoelectronic devices, and sensing applications. However, to enable practical integration into current semiconductor processes, challenges such as random nucleation, non-uniform crystal size, multilayer growth, and defects from transfer procedures must be overcome. To address these issues, this study proposes a controllable array-based chemical vapor deposition (CVD) approach using pre-patterned gold nanodots as nucleation templates. By defining gold dot arrays via electron beam lithography and optimizing precursor delivery and gas flow stability through a one-side sealed inner quartz tube and carbon cloth shielding, the growth uniformity and nucleation precision of MoS₂ crystals were significantly improved.
    Comprehensive material characterization—including optical microscopy, Raman spectroscopy, photoluminescence (PL), second-harmonic generation (SHG), and atomic force microscopy (AFM)—confirmed the formation of monolayer MoS₂ crystals with symmetric morphology, atomic-scale thickness, and strong nonlinear optical responses, indicating excellent crystallinity and in-plane uniformity. Furthermore, back-gated field-effect transistors (FETs) fabricated from the synthesized materials exhibited stable n-type behavior under varying gate voltages, with low off-state currents, high on/off ratios, and favorable carrier mobility, demonstrating good channel quality and reliable metal contact. This study also evaluated the impact of photoresist and gold dot removal on material stability, and elemental and spectral analyses confirmed that the cleaning process did not degrade the crystal structure or optical properties, indicating robust material integrity and process compatibility. In summary, this work successfully establishes a MoS2 array growth process with precise positional control and size uniformity, verifying its feasibility for device integration and property modulation, and offering a practical technological foundation for future applications of 2D materials in sub-nanometer logic devices and heterogeneous process integration.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML36檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明