English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83776/83776 (100%)
造訪人次 : 60498689      線上人數 : 958
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98742


    題名: 語意分割模型應用於車體表面瑕疵檢測之比較分析;Comparative Analysis of Semantic Segmentation Models for Car Specular Surface Defect Detection
    作者: 林佑謙;Lin, Yu-Chien
    貢獻者: 機械工程學系
    關鍵詞: 自動視覺檢測;人工智慧;車體瑕疵檢測;Automated Visual Inspection;Artificial Intelligence;Car Defect Detection
    日期: 2025-08-13
    上傳時間: 2025-10-17 13:14:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究針對鏡面車體面板進行表面瑕疵偵測與分類,利用偏折成像量測技術(deflectometry),系統性地比較基於卷積神經網路(CNN)與Transformer架構語意分割模型的性能表現。實驗中建構了一套高解析度的影像擷取系統,其中包含影像擷取裝置、可移動平台,以及具備光源控制的照明系統,以提升干涉條紋影像的品質並精確捕捉表面變化。此外,透過此系統建立了一組自製的偏折成像測量資料集,其中,涵蓋三種類型的瑕疵標註,包括點狀、線狀與面狀瑕疵,透過該瑕疵分類來比較各種模型在處理不同幾何缺陷特徵時的優劣。
    本研究共評估四種語意分割模型,並採用五摺交叉驗證法,最終於獨立測試集上進行驗證。所比較的模型包含以 ResNet 與 ResNeXt 為骨幹網路的 Cascade Mask R-CNN、以 Swin Transformer 為特徵萃取器並整合於 Cascade Mask R-CNN 框架中的混合模型,以及以 SegFormer 為代表的純Transformer架構。其中, Swin Transformer 搭配的 Cascade Mask R-CNN 模型於獨立測試集中達到最高 mIoU 值 64.90%。進一步將語意分割任務簡化為僅區分「瑕疵」與「非瑕疵」兩類時,混和模型所構建的模型在獨立測試集中達成 IoU 92.26%、Precision 100%、Recall 95.97%、F1 Score 97.94%,展現出極高的檢測準確率與實務應用潛力。
    綜合實驗結果,混合模型在本研究中達到最佳效能,並將每張影像的推理時間控制在 0.2 秒以內。此結果顯示,即使在數據有限的情況下,亦可同時兼顧高分割精度與即時可行性。值得一提的是,SegFormer mit-b5 雖然在小樣本條件下的量化指標不及卷積神經網路模型,但其分割可視化結果呈現出良好的結構解析能力與一定的泛化潛力,顯示其在更大規模資料條件下仍具發展應用的價值。
    ;This study presents a systematic comparison of CNN-based and Transformer-based semantic segmentation models for surface defect segmentation on specular car body panels using deflectometric imaging. A high-resolution image acquisition setup was established, comprising an image acquisition system, a motorized moving platform, and a controlled lighting system, to enhance the quality of deflectometric patterns and accurately capture surface variations. In addition, a custom deflectometric dataset was constructed, containing annotated point-, line-, and patch-type defects. These defect categories were defined to enable a detailed comparison of each model’s strengths and limitations when handling different defect geometries.
    In this study, four semantic segmentation models were evaluated using five-fold cross-validation and validated on an independent test set. These include Cascade Mask R-CNN with ResNet and ResNeXt backbones, a hybrid model based on Cascade Mask R-CNN with the Swin Transformer backbone, and a pure Transformer model represented by SegFormer. Among these models, Swin Transformer combined with Cascade Mask R-CNN achieved the highest mean IoU of 64.90 % on the independent test set. Furthermore, when the semantic segmentation task was simplified to a binary classification of defective vs. non-defective objects, the hybrid model attained an IoU of 92.26%, a Precision of 100%, a Recall of 95.97%, and an F1 Score of 97.94%, demonstrating excellent detection accuracy and strong potential for practical deployment.
    Overall, the hybrid model achieved the best performance while keeping inference time below 0.2 s per image, comparable to other architectures. This demonstrates that high segmentation accuracy and real-time feasibility can be achieved simultaneously, even with limited data. Notably, although SegFormer mit-b5 underperformed CNN-based models in quantitative metrics under small-sample conditions, its segmentation visualizations exhibited excellent structural interpretation and a certain degree of generalization potential. It thereby indicates promising applicability with larger-scale datasets.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML20檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明