中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98750
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 60125661      在线人数 : 602
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98750


    题名: 結合未來氣象預報與雙流式 ViT 架構的可解釋太陽能發電量預測模型
    作者: 顏宏庭;Yan, Hong-Ting
    贡献者: 機械工程學系
    关键词: 多變量時間序列預測;太陽能發電預測;未來天氣預報整合;多頭預測模組;模型可解釋性;Multivariate time series forecasting;solar power forecasting;integration of future weather forecasts;multi-heads predict module;model interpretability
    日期: 2025-08-20
    上传时间: 2025-10-17 13:15:04 (UTC+8)
    出版者: 國立中央大學
    摘要: 近期已有許多深度學習模型被提出用於多變量時間序列(MTS)預測的研究。
    其中,以 Transformer 為基礎的模型因其具備有效捕捉長期依賴關係的特性,展現
    出極大的潛力與應用價值。然而,現有模型在應用於太陽能發電預測時,未能充分
    考量太陽能發電本身具有的間歇性與高度依賴氣象條件的特性。此外,這些模型通
    常未將未來天氣預報資訊納入考量,使預測的精準度受限。此外,現有的時間序列
    預測模型普遍呈現「黑盒」特性,缺乏足夠的可解釋性,導致使用者難以理解模型
    決策的依據與運作原理。這些問題凸顯出在太陽能發電預測領域,仍缺乏專門針對
    該領域需求所設計的模型。
    為填補這項研究空白,本論文提出一種創新的太陽能發電預測模型,結合了過
    去的發電數據與氣象資料,以及未來的天氣預報資訊。模型設計上透過將過去與未
    來資訊依特定時間間隔切割為多個時間段,從不同時間角度有效地預測未來太陽
    能發電量。此外,本論文特別設計多發電預測頭模組,透過多發電區段的預測方法,
    有效提升預測準確度,同時賦予模型良好的可解釋性,使得使用者能明確理解模型
    如何根據不同因素做出預測。
    透過實驗驗證,本論文所提出之模型不僅具備高精確性,並因未來天氣預報資
    訊的加入及多預測頭模組設計,性能及解釋性明顯優於傳統方法,能夠為能源管理
    者提供清晰明確的決策支援,提升其實務應用價值。;In recent years, numerous deep learning models have been proposed for multivariate
    time series (MTS) forecasting. Among them, Transformer-based models have
    demonstrated significant potential and practical value due to their ability to effectively
    capture long-term dependencies. However, existing models applied to solar power
    forecasting often overlook the inherent intermittency and strong dependency on
    meteorological conditions specific to solar energy generation. Furthermore, these models
    typically fail to incorporate future weather forecasts, thereby limiting their prediction
    accuracy. In addition, current time series forecasting models generally exhibit "black box" characteristics, lacking sufficient interpretability, which makes it difficult for users
    to understand the basis and rationale behind model decisions. These limitations highlight
    the absence of models specifically designed to meet the unique demands of solar power
    forecasting.
    To address this research gap, this thesis proposes an innovative solar power
    forecasting model that integrates historical power generation data, past meteorological
    data, and future weather forecasts. The model is designed to segment both past and future
    information into multiple time intervals, enabling effective prediction of future solar
    power generation from different temporal perspectives. In particular, the model
    introduces a multi-heads predict module that forecasts power generation across multiple
    time segments, thereby improving prediction accuracy and enhancing model
    interpretability. This allows users to clearly understand how the model makes predictions
    based on various contributing factors.
    Experimental results validate the effectiveness of the proposed model,
    demonstrating not only high accuracy but also significantly improved performance and
    interpretability due to the incorporation of future weather forecasts and the multi-head prediction architecture. These advancements provide clear and actionable decision
    support for energy managers, enhancing the model’s practical applicability.
    显示于类别:[機械工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML10检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明