中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/98753
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59563634      Online Users : 842
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/98753


    Title: 多模態影像與時間感知之電網負載預測與異常風險預警架構
    Authors: 林韋傑;Lin, Wei-Jie
    Contributors: 機械工程學系
    Keywords: 時間序列預測;異常風險預警;time-series forecasting;anomaly-risk early warning
    Date: 2025-08-21
    Issue Date: 2025-10-17 13:15:22 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究聚焦於智慧電網場域中「長短時段用電趨勢預測」與「異常風險預警」的同步需求,提出一套雙分支深度架構。第一分支將一維負載序列透過 Gramian Angular Summation Field(GASF)轉為影像特徵,並與原始序列在 Time-Aware Transformer 中以門控機制動態融合(Gated Feature Fusion),成功降低極短時間與長時間預測的誤差累積;第二分支利用重取樣的資料處理與 Focal Loss 訓練之 Bi-LSTM,在保持低誤報率前提下,對未來每一分鐘異常事件給出機率預警。兩分支模型推論後,並以 TimeSHAP 生成時間步與特徵層面的可解釋性。實驗顯示,所提方法在 ETT 系列四個資料集的 96、192、336 步視窗皆取得最低 MSE;異常分支於 Server Machine Dataset 測試集達到 0.885 PR-AUC 與 0.953 F1,證明本研究模型設計能兼顧精準度、即時性與可解釋性,為能源管理與工業監控提供一體化解決方案。;This study addresses the dual need in smart-grid operations for both short- and long-horizon load-trend forecasting and minute-level anomaly‐risk early warning. We propose a two-branch deep architecture.
    The forecasting branch converts one-dimensional load sequences into Gramian Angular Summation Field (GASF) images and fuses them with the raw series through a Gated Feature Fusion mechanism inside a Time-Aware Transformer, markedly reducing error accumulation over very short to very long prediction windows.
    The warning branch applies data re-sampling and Focal-Loss-trained Bi-LSTM to output minute-ahead anomaly probabilities while maintaining a low false-alarm rate. After inference, both branches are explained with TimeSHAP, providing step-wise and feature-level interpretability.
    Experiments on four ETT benchmark datasets show the proposed model achieves the lowest MSE at 96-, 192- and 336-step horizons; on the Server Machine dataset the anomaly branch attains a PR-AUC of 0.885 and an F1 score of 0.953. These results demonstrate that the framework delivers accuracy, real-time capability and interpretability in a single solution, making it well-suited to energy management and industrial monitoring tasks.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML24View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明