資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://ir.lib.ncu.edu.tw/handle/987654321/98756
|
| 題名: | 3D列印電極放電塗層:製程優化、材料分析及應用;3D-Printed Electrode-Enabled Electrical Discharge Coating: Process Optimization, Material Analysis, and Applications |
| 作者: | Awarasang, Siddanna;Awarasang, Siddanna |
| 貢獻者: | 機械工程學系 |
| 關鍵詞: | 放電塗層 (EDC);傳統塗層;3D列印電極;去離子水介電液;表面改質;Electrical Discharge Coating (EDC);Conventional coating;3D-printed electrodes;Deionized water dielectric;Surface modification |
| 日期: | 2025-08-25 |
| 上傳時間: | 2025-10-17 13:16:03 (UTC+8) |
| 出版者: | 國立中央大學 |
| 摘要: | 本論文全面研究了電火花塗層 (EDC) 這項先進的表面改質技術,該技術採用傳統電極、粉末懸浮電極和增材製造(3D 列印)電極。研究重點在於 3D 列印 Ti-6Al-4V 和 SUS-420 鋼電極在銅、鎢和 SUS304 不銹鋼等導電基材上的塗層性能。去離子水 (DI) 及其與過氧化氫 (5–10%) 的混合物被用作環保型介電流體,以增強氧化層的形成和塗層特性。實驗結果表明,與傳統方法相比,3D 列印電極 (3DPE) 顯著提高了塗層厚度、均勻性和功能特性。 SEM、EDS、XRD 和 XPS 分析證實,使用 DI 水可以形成緻密、無裂紋、富含陶瓷的塗層,包括 TiO₂ 和 TiC 相。值得注意的是,3D 列印的 SUS420 鋼電極專門用於塗覆銅,從而形成了均勻的富鋼層,缺陷最少,表面完整性得到提高。同時,3D 列印的 Ti-6Al-4V 電極用於塗覆銅和 SUS304 不銹鋼,生產出具有優異附著力、絕緣性能和耐腐蝕性的堅固的 TiO₂ 塗層。塗層的鈦含量高達 74.93%,優化的放電參數(電流在 6A–9A 之間,佔空比可變)提高了塗層品質。最大塗層厚度達到 141.16 µm,殘餘壓應力為 -705.576 MPa,證明了強大的機械穩定性。在 3.5% NaCl 溶液中進行的腐蝕試驗顯示出優異的性能,在最佳條件下最低 Icorr 值為 4.08 × 10⁻¹⁰ A/cm²。此外,還進行了統計分析,以確定使用傳統鈦電極和 3D 列印鈦合金電極在鎢基材上進行 EDC 塗層的最佳化參數和條件。結果表明,3DPE 提供了更直接的最佳化路徑,可實現更高的塗層厚度和鈦含量,同時降低表面粗糙度。這項研究證實了在 DI 水基電介質中使用 3D 列印電極進行 EDC 製備高性能塗層的可行性。該方法為傳統塗層技術提供了一種靈活、經濟的替代方案,並為防腐、電絕緣和功能性表面工程的應用開闢了新的途徑。 3D 列印電極的使用標誌著 EDC 的重大進步,它能夠實現客製化電極設計、提高塗層精度並增強對複雜幾何形狀的適應性,從而徹底改變現代製造業的表面工程處理方式。 ;This thesis presents an in-depth study of Electrical Discharge Coating (EDC) as an advanced surface modification technique using conventional, powder-suspended, and 3D-printed electrodes. The work evaluates the performance of 3D-printed Ti-6Al-4V and SUS-420 steel electrodes for coating conductive substrates, including copper, tungsten, and SUS304 stainless steel. Deionized (DI) water and its mixtures with hydrogen peroxide (5–10%) were employed as eco-friendly dielectric fluids to enhance oxide formation and coating quality. Results show that 3D-printed electrodes (3DPEs) achieved superior coating thickness, uniformity, and functional properties compared to conventional methods. DI water enabled dense, crack-free ceramic-rich layers (TiO₂ and TiC), confirmed by SEM, EDS, XRD, and XPS. The 3D-printed SUS420 steel electrode was used exclusively on copper, producing a defect-free steel-rich coating with improved integrity. Ti-6Al-4V electrodes coated copper and SUS304 stainless steel, yielding robust TiO₂ layers with strong adhesion, insulation, and corrosion resistance. Coatings contained up to 74.93% titanium, with optimized discharge parameters (6–9 A, variable duty factors) producing the best results. A maximum thickness of 141.16 µm and residual compressive stress of −705.576 MPa confirmed high mechanical stability. In 3.5% NaCl solution, coatings achieved excellent corrosion resistance, with the lowest Icorr value of 4.08 × 10⁻¹⁰ A/cm².Statistical analysis further highlighted that 3DPEs enabled easier optimization, producing thicker coatings with higher titanium content and lower roughness than conventional electrodes. This research demonstrates the potential of EDC with 3D-printed electrodes in DI water-based dielectrics for high-performance coatings. The approach offers a flexible, economical alternative to traditional methods and expands applications in corrosion protection, electrical insulation, and functional surface engineering. By enabling tailored electrode design and coating precision, 3D printing represents a significant advancement in EDC for modern manufacturing. |
| 顯示於類別: | [機械工程研究所] 博碩士論文
|
文件中的檔案:
| 檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
| index.html | | 0Kb | HTML | 13 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|