English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56972868      線上人數 : 4999
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98759


    題名: 基於機器視覺於三維機械手臂骨架偵測與避障路徑規劃;Machine Vision-Based 3D Robotic Arm Skeleton Detection and Obstacle Avoidance Path Planning
    作者: 廖哲奇;Liao, Che-Chi
    貢獻者: 機械工程學系
    關鍵詞: 機械手臂;視覺感知;深度學習;立體視覺;三維重建;動態手眼校正;人工勢場法;即時避障;Robotic arm;Visual perception;Deep learning;Stereo vision;3D reconstruction;Dynamic hand–eye calibration;Artificial potential field;Real-time obstacle avoidance
    日期: 2025-08-25
    上傳時間: 2025-10-17 13:16:18 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究旨在建構一套整合視覺感知、三維重建、動態手眼校正與避障控制的智慧型機械
    手臂系統,以因應智慧製造與人機協作環境中日益提升的彈性與即時性需求。核心技術首先
    著重於高效且準確的視覺骨架建立,本研究採用 YOLOv11 Pose 模型對協作型機械手臂進行
    即時二維關鍵點偵測,並搭配雙相機立體視覺進行三角測量,重建具結構性的三維骨架。此
    三維資訊不僅為後續手眼校正提供基礎,也大幅提升整體系統對手臂動態狀態的掌握能力。
    針對實務應用中常見的相機位置偏移問題,進一步導入基於剛體轉換擬合之動態手眼校正技
    術,透過將視覺重建骨架與正向運動學推導的理論骨架進行快速對應,持續更新相機與手臂
    間的外部參數,避免傳統靜態標定在環境變動下失效的問題,提升系統在動態情境下的穩定
    性與精度。在避障控制方面,本系統整合 Intel RealSense D455 深度攝影機,即時擷取周遭點
    雲資訊,並透過 DBSCAN 演算法進行雜訊濾除與障礙物建模。於此基礎上,本研究設計兩
    種人工勢場避障策略:其一為靜態策略,於任務前利用吸引與斥力場修正目標位置,並結合
    逆運動學反覆求解避障路徑,適用於靜態環境;其二為動態策略,於每個控制週期中即時計
    算排斥力向量,並經由雅可比矩陣轉換為關節空間修正量,適用於動態或突發障礙物場景。
    兩種策略均支援多障礙物處理,增強系統於複雜場域下的靈活性與安全性。;This study aims to develop an intelligent robotic arm system that integrates visual perception, 3D
    reconstruction, dynamic hand-eye calibration, and obstacle avoidance control, in response to the
    increasing demand for flexibility and real-time adaptability in smart manufacturing and human-robot
    collaboration environments. The system first focuses on efficient and accurate skeleton construction
    by using the YOLOv11 Pose model for real-time 2D keypoint detection of a collaborative robotic
    arm, combined with dual-camera stereo vision to reconstruct a structured 3D skeleton via
    triangulation. This 3D data serves as the basis for subsequent hand-eye calibration and significantly
    enhances the system’s ability to perceive the arm’s dynamic state. To address practical challenges
    such as camera pose shifts, a dynamic hand-eye calibration method based on rigid-body
    transformation fitting is introduced. By aligning the vision-based skeleton with the theoretical
    skeleton derived from forward kinematics, the system continuously updates the external parameters
    between the camera and the arm, overcoming the limitations of traditional static calibration in
    changing environments. For obstacle avoidance, an Intel RealSense D455 depth camera is used to
    capture real-time point cloud data, which is filtered and clustered using the DBSCAN algorithm to
    build obstacle models. Based on this, two artificial potential field strategies are proposed: a static
    method that adjusts target positions with attractive and repulsive fields and solves obstacle-free paths
    using inverse kinematics, and a dynamic method that computes repulsive force vectors in real time
    and maps them to joint space via the Jacobian matrix. Both strategies support multi-obstacle handling
    and enhance the system’s flexibility and safety in complex environments.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML6檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明