English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83696/83696 (100%)
造訪人次 : 56972872      線上人數 : 5003
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/98775


    題名: 連續柴氏長晶法之坩堝設計生長矽單晶之熱場和氧濃度與熱應力數值模擬;Numerical Simulation of Temperature, Oxygen Concentration, and Thermal Stress in Silicon Single Crystal Growth with Continuous Czochralski Crucible Design
    作者: 詹雅淇;Chan, Ya-Chi
    貢獻者: 機械工程學系
    關鍵詞: 連續柴氏長晶法;坩堝設計;晶體旋轉;熱應力;CCz;crucible design;crystal rotation;thermal stress
    日期: 2025-09-18
    上傳時間: 2025-10-17 13:20:26 (UTC+8)
    出版者: 國立中央大學
    摘要: 連續柴氏長晶法(Continuous Czochralski crystal growth, CCz)是在傳統柴氏長晶法(Czochralski crystal growth, Cz)的基礎上進行改良,以提升生產效率。CCz 方法透過持續向坩堝中加入多晶矽,使熔湯保持穩定液面高度及化學組成。然而,為避免尚未完全熔化的多晶矽影響晶體生長,本研究引入石英隔板以隔離進料區與晶體生長區,但隔板的加入同時改變了熔湯流動與熱傳分布,並可能引起氧雜質濃度增加。因此,本研究針對連續柴氏雙坩堝長晶中的氧濃度問題,透過設計爐體結構,並使用數值模擬進行分析在不同洞口位置及尺寸、不同上隔板位置、不同側加熱器長度、不同功率比及不同晶體旋轉速度下,對溫場、流場、氧濃度以及固液(晶體-熔湯)界面高度的影響。爐體結構設計優化後可以使固液(晶體-熔湯)界面的氧濃度比原先的爐體結構降低約3.4 ppma。在反向、同向旋轉下,觀察對溫場、流場、氧濃度、固液(晶體-熔湯)界面高度及熱應力的變化。;The Continuous Czochralski (CCz) method is an enhancement of the conventional Czochralski (Cz) process, developed to improve production efficiency. In CCz, polycrystalline silicon is continuously added into the crucible to maintain a stable melt level and chemical composition. To prevent incompletely melted polycrystalline silicon from affecting crystal growth, a quartz partition is introduced to separate the feed zone from the growth region. However, the presence of the partition alters melt flow and heat transfer, potentially increasing oxygen concentration.
    This study investigates the oxygen concentration in a continuous Czochralski double-crucible system through furnace design optimization and numerical simulation. The effects of partition hole location and size, upper partition position, side heater length, heater power ratio, and crystal rotation rate on temperature distribution, flow pattern, oxygen concentration, and the solid–liquid (crystal–melt) interface height were analyzed. Optimization of the furnace structure resulted in a reduction of approximately 3.4 ppma in oxygen concentration at the solid–liquid interface compared to the original design. Additionally, the impacts of counter-rotation and co-rotation on temperature, flow, oxygen distribution, interface height, and thermal stress were examined.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML14檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明