本篇論文透過理論研究探討帶有空洞的非對稱長度扶手椅型石墨烯奈米帶(Armchair graphene nanoribbons, AGNRs)異質結構中的電子熱流,並針對拓樸態(topological states, TSs)對熱流調控所帶來的影響。本篇利用雙局部化態的Hubbard 模型,計算經由串聯耦合拓樸態(serially coupled TSs, SCTSs)的穿隧電流。由於9-7-9 AGNR異質結構的TSs與導電帶和價電帶良好隔離,因此可以有效地減少在電荷傳輸中因溫度所引起的熱噪音。為了提升熱整流比(????),我們透過改變9 AGNR的長度調控電極與拓樸態的穿隧率,並在不影響拓樸態的穩定下適度引入空洞以抑制聲子熱流。本篇研究展現AGNR異質結構在熱整流的展望,特別是拓樸態之間的庫倫交互作用以及異質結構的調整對熱流的影響。;This study presents a theoretical investigation of electron heat transport in asymmetrical length armchair graphene nanoribbon (AGNRs) heterostructures with vacancies, focusing on the influence of topological states (TSs) on heat current regulation. We use a two-site Hubbard model to calculate the tunneling current through serially coupled topological states (SCTSs). In the 9-7-9 AGNR heterostructure, the TSs are well isolated from both the conduction and valence subbands, effectively suppressing thermal noise arising from temperature fluctuations during charge transport. To enhance the heat rectification ratio (????), we modulate the tunneling rate between the electrodes and the TSs by varying the length of the 9 AGNR segment. Additionally, vacancies are introduced without affecting the stability of the TSs to suppress phonon heat transport. This study highlights the potential of AGNR heterostructures for thermal rectification, particularly emphasizing the role of inter-TS Coulomb interactions and structural modulation in controlling electron heat transport.