![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:15 、訪客IP:3.128.31.200
姓名 劉玉章(Yu-chang Liu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 短波長光通訊之矽標準製程光檢測器
(Photodetectors Fabricated by Standard Silicon Process Technology)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文利用0.18 um CMOS及0.35 um BiCMOS標準製程實現光檢測器。在BiCMOS光檢測器部分,使用SiGe 高崩潰HBT製程中Base及Collector所形成之二極體,並利用Local Collector區域吸收光。在11.06V的逆偏壓下,響應度為0.26 A/W,頻寬為1.65 GHz,操作資料速率為1.25 Gb/s。在CMOS光檢測器部分,使用n型、p型井製程及離子佈值製作光檢測器元件。元件操作在雪崩崩潰區域時,由於漂移載子的劇烈增加減少了慢速擴散載子的影響,因此光檢測器的頻寬得以大幅增加。結果可得到文獻最高記錄頻寬為1.6 GHz及最高操作資料速率為3.5 Gb/s。此論文中還提出使用Body Contact對前述CMOS光檢測器改善。當外加偏壓至Body Contact時,在光檢測器的下方會形成一電流路徑而有效消除慢速擴散載子,得以增加光檢測器頻寬及速度。當Body 偏壓為10 V時,可得到頻寬為2.8 GHz,並且操作資料速率可至 5 Gb/s。除此之外,論文中亦分析出漂移載子的比例,結果顯示:一、當操作在雪崩崩潰區域時,漂移載子的比例將遠大於擴散載子的比例,因此光檢測器的頻寬得以提升;二、加入Body偏壓時,光檢測器下方的電流後可以掃除慢速擴散載子,且元件並不需要操作在雪崩崩潰區域即可得到高比例的漂移載子,證明本論文所提出的改善方法相當有效。 摘要(英) This work demonstrates photodiodes (PDs) fabricated by standard silicon process technologies. Two kinds of PDs are proposed. One is in CMOS technology and the other is in BiCMOS technology.
We show a good responsivity, record high bandwidth (1.6 GHz) and record high data rate (3.5 Gb/s) from the CMOS PD which is operated in avalanche region and the breakthrough results are published in IEEE Photonics Technology Letters.
Moreover, we remove the slow diffusion carriers which are generated from substrate in CMOS PD by using body contact design with supplied voltage to create a current path under the device. And those slow carriers are swept into the current flow to ground (p-contact). It results in better pulse response and removes the long tail compared to PD with floating body voltage (VB) in pulse measurement. Finally, the PD with VB = 10 V shows another record high bandwidth of 2.8 GHz and record high eye diagram of 5 Gb/s.
Besides, the BiCMOS PD is proposed from modifying the SiGe HBT layout without emitter region. It shows a responsivity of 0.26 A/W at VR of 11.06 V and the 1.25 Gb/s eye diagram is also obtained.關鍵字(中) ★ 高速
★ 標準製程
★ 光檢測器
★ 雪崩二極體
★ 雪崩區
★ 光二極體
★ 高響應度
★ 矽
★ 高頻寬關鍵字(英) ★ high speed
★ high responsivity
★ high bandwidth
★ avalanche
★ avalanche photodiode
★ standard process
★ photodiode
★ CMOS
★ silicon
★ photodetector論文目次 目錄 i
圖目錄 iii
表目錄 ix
第一章 導論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 標準製程製作之光檢測器簡介 4
2.1 光纖通訊簡介 4
2.2 光連接與電連接差異 5
2.3 矽光檢測器介紹 8
2.4 標準製程之光檢測器 13
第三章 BiCMOS製程之光檢測 15
3.1 研究近況 15
3.2 設計與模擬 16
3.3 量測結果 22
3.4 模型萃取 28
3.5 結論 34
第四章 CMOS製程之光檢測器 36
4.1 研究近況 36
4.2 設計方式 39
4.3 量測結果 41
4.4 模型萃取 47
4.5 結論 52
第五章 CMOS製程光檢測器之特性改善 54
5.1 特性改善模擬 54
5.2 結構改善設計 60
5.3 量測結果 61
5.4 結論 69
第六章 總結 71
參考文獻 73
附錄
A BiCMOS 光電積體整合電路 78
B CMOS光電積體整合電路 91參考文獻 [1]Sasa Radovanovic´, Anne-Johan Annema, and Bram Nauta, "A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication," IEEE Journal of Solid-State Circuits, Vol. 40, No. 8, 2005.
[2]M. Jutzi, M. Grözing, E. Gaugler, W. Mazioschek, and M. Berroth, "2-Gb/s CMOS Optical Integrated Receiver With a Spatially Modulated Photodetector," IEEE Photonics Technology Letters, Vol. 17, No. 6, 2005.
[3]B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, "10-Gb/s All-Silicon Optical Receiver," IEEE Photonics Technology Letters, Vol. 15, No. 5, 2003.
[4]鍾孝文, “應用於1550 nm波長之寬頻高速光積體電路之研製,” 國立中央大學碩士論文, 2006.
[5]Kasap, S. O., Optoelectronics and photonics: principles and practices, Prentice Hall, 2001.
[6]G. P. Agrawal, Fiber-Optical Communication Systems, John Wiley and Sons, New York, 1997.
[7]Sasa Radovanovic, Anne-Johan Annema, and Bram Nauta, High-Speed Photodiodes in Standard CMOS technology, Springer, 2006.
[8]D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectronics 11, pp.155-168, 1997.
[9]D.A.B. Miller and H.M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects form the aspect ratio of the system architecture,” Journal of Parallel and Distributed Computing, 41, 4252, 1997.
[10]D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips”, Proceeding of IEEE, vol.88, 2000.
[11]David M.Pozar, Microwave Engineering 2ed, John Wiley & Sons, 1998.
[12]Wei-Jean Liu, Oscal T-C. Chen, Li-Kuo Dai, Ping-Kuo Weng, Kaung-Hsin Huang and Far- Wen Jih, “A CMOS Photodiode Model,” IEEE International Workshop on Behavioral Modeling and Simulation, 2001.
[13]Jin-Wei Shi, Slide of Ultra-High Speed Optoelectronic Devices, Chapter 4, 2006.
[14]M. D. Sturge, “Optical Absorption of Gallium Arsenide Between 0.6 and 2.75 eV, ” Physical Review, 127, 768, 1962.
[15]S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York 1981.
[16]S. S. Murtaza, H. Nie, J. C. Campbell, J. C. Bean, and L. J. Peticolas, “Short-Wavelength, High-speed, Si-Based Resonant-Cavity Photodetector,” IEEE Photonics Technology Letters, Vol. 8, No. 7, 1996.
[17] C. Hermans, and M. S. J. Steyaert, “A High-Speed 850-nm Optical Receiver Front-End in 0.18-指導教授 辛裕明(Yue-ming Hsin) 審核日期 2007-7-11 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare