博碩士論文 92426019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.119.192.101
姓名 蔡昀庭(Yun-Ting Tsai)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 B2B拍賣網上結標價和結標時間的預測
(Auction Close Price and Duration Prediction with Attribute Oriented nduction)
相關論文
★ 以八階段分析法進行談判策略之個案研究★ 以AHP法研究企業評選顧問公司之準則
★ 應用啟發式演算法挖掘與表示商業流程的碳排量屬性★ ERP為基準碳足跡計算之觀念性架構發展
★ 作業基礎制碳足跡方法-以作業制成本法為基礎發展產品碳足跡計算之方法★ 不同顆粒度流程一致化之研究
★ 一致化不同顆粒度所衍生企業流程之研究★ 企業導入企業資源規劃系統之目標、過程與成效
★ 運用動態分群方法在市場區隔上 -以電信產業為例★ 企業資源規劃系統之執行效果 ─以台灣地區企業為例
★ 運用時間斐氏圖模擬SCOR流程★ ERP導入期關鍵活動與企業財務績效關聯之研究
★ 以Char演算法協同特徵化公司財務表現★ 於共引用分析中使用完整作者集之研究
★ 探討客戶權力在客服工程師知識分享意圖之影響★ 以數學規劃求解最佳之間接材料選擇與人力配置
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在拍賣極為盛行的時代,許多公司早已使用拍賣的方式來取代傳統採購的行為,而當公司的採購決定以拍賣的方式解決,往往三方(下標者、買方或賣方、電子交易市集供者)都會面臨到相當大的壓力,拍賣的價差可能影響著公司的這筆生意是盈餘或虧損,但在拍賣結束前並無法確知最後價格。另外拍賣交易進行的時間也關係著三方人員需在網站上耗費的時間。因此實務上,三方人員都希望能盡快知道可能的拍賣結標價與所需時間。
本研究提出一個改良式屬性導向歸納演算法,從過去的拍賣資料建立出價時間與出價的概念樹並歸納出序列規則。這些規則能夠對未來結標價與結標價格分別作預測,並給予一個期望的百分比;最後驗證的結果發現,我們能夠對於結標時間作有效的預測,而對於結標價還有改善的空間。
摘要(英) In this thesis, we proposed a modified attribute oriented induction method to find rules which can predict close price (the actual price paid by winner) and the duration (from the beginning of auction to the last bid) of Business-to-Business auctions exercised on a commercial website. The uncertainty faced both sellers and buyers is an inherent feature of auctions. While a seller is anxious for knowing the actual selling price, a Bidder has very short time to decide to bid or not to bid at this moment, especially when a little difference may cause very big loss or profit to a company. Even the provider of the e-marketplace also cares about whether this is an efficient auction when the close price should be higher (lower) than the reserve price in a forward (backward) auction, how long the auction would be taken and when the employees should come back to handle the results. Therefore, how fast one can predict the outcome of the auction and how accurate the prediction is became a critical problem.
We focused on two important variables of auction, time and price, and collected auction data of backward English auction format of three buyers which represent three distinct companies from a B-to-B auction e-marketplace provider in the past two years. The rules summarized from datasets by our modified attribute oriented induction can estimate the predicted close price and duration after several bids are taken when an auction opened
關鍵字(中) ★ 資料探勘
★ 屬性導向歸納法
★ 拍賣
關鍵字(英) ★ Data mining
★ Auction
★ Attribute Oriented Induction
論文目次 List of Tables C
List of Figures D
Abstract E
1. Introduction 1
1.1 Motivation 1
1.2 Research Objective 1
1.3 Background 2
1.4 Thesis Organization 3
2. Literature Review 5
2.1 Auction 5
2.1.1 Auction overview 5
2.1.2 Four Common Auction Forms 7
2.1.3 Related Works of Auction 12
3.Approach Overview 16
3.1 Data Collection 17
3.2 Clustering Data 19
3.2.1 Cluster Overview 20
3.2.2 The K-means Method 21
3.2.3 Deciding the parameter k in K-means clustering method 23
3.3 Generating Auction Results 27
3.3.1 Auction Oriented Induction 28
3.3.2 Concept Hierarchy 30
3.3.2.1 Binning Method 32
3.3.3 Modified AOI Algorithm 36
3.3.4 Prediction 38
4. Experimental 40
4.1 Experiment 40
4.2 Performance Evaluation 42
5. Conclusions 44
6. Reference 45
參考文獻 1. Auctions-by Kate Reynolds One in a Series of Articles from Agorics, Inc.
2. V. Krishna. Auction Theory. Harcourt Publishers Ltd, 2002.
3. Research Team: A. J. Bagnall, I. Toft and Y. Zatuchnny. Funding: TCS Program 3798 : ”Data mining an auction data base”
4. A. J. Bagnall and I. Toft: “An Agent Model for First Price and Second Price Private Value Auctions”
5. Loretta J. 1988. "Going, Going Gone: Setting Prices with Auctions" Federal Reserve Bank of Philadelphia Business Review (March/April):3-13.
6. Jiawei Han and Yandong Cai. 1992. "Knowledge Discovery in Databases: An Attribute-Oriented Approach"
7. D. Gode and S. Sunder. Allocative efficiency of markets with zero intelligence traders. Journal of Political Economy, 101:119{137, February 1993.
8. D. Cliff and J. Bruten. Zero is not enough: On the lower limit of agent intelligence for continuous double auction markets, 1997.
9. G. Tesauro and R. Das. High-performance bidding agents for the continuous double auction. In Proceedings of the Third acm Conference on Electronic Commerce, pages 206{209, 2001.
10.Michael P. Wellman and Junling Hu. Conjectural equilibrium in multiagent learning. Machine Learning, 33(2-3):179{200, 1998.
11.Bajari, P. and A. Hortacsu, “Winner’s Curse, Reserve Prices, and Endogenous Entry: Empirical Insights from Ebay Auctions,” (2002), The Rand Journal of Economics
12.Bryan, D., Lucking-Reily, D., Prasad, N., Reeves, D. Pennies from eBay: the Determinants of Price in Online Auctions., January 2000
13.Diettrich, T. & Bakiri, G. (1995). Solving Multiclass Learning Problems via Error- Correcting Output Codes. Journal of Artificial Intelligence Research, 2;263--286, 1995.
14.JK MacKie-Mason, A Osepayshvili, DM Reeves, and MP Wellman. Price Prediction Strategies for Market-Based Scheduling. To appear, Fourteenth International Conference on Automated Planning and Scheduling, 2004.
15.Robert E. Schapire, Peter Stone, David McAllester, Michael L. Littman, and János A. Csirik. Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. In Proceedings of the Nineteenth International Conference on Machine Learning, 2002.
16.Wellman, M.P., Reeves, D.M., Lochner, K.M. and Vorobeychik, Y. (2004) "Price Prediction in a Trading Agent Competition", Journal of Artificial Intelligence Research, Volume 21, pages 19-36.
17.Rayid Ghani, Hillery Simmons Predicting the End-Price of Online Auctions
18.Zhi-Xiong Hunag, Chu-Chai Chan Applying Data Mining to Analyze Online Auction Market
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2005-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明