博碩士論文 943202036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.142.243.141
姓名 張哲胤(Che-yin Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 乾燥砂土中音波及振波之傳遞特性
(The transmission properties of sound waves and vibration waves in dry sand)
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要係利用微音器及加速度計量得之波傳訊號,對砂土層中因振動或變位所產生之音波與振波之傳播特性,進行探討與測試。
本研究規劃在大型土槽中挖出一溝槽,再將挖出之砂依所需之相對密度進行霣降,霣降過程中將微音器及加速度計置於所需之各種位置,量測由音源傳遞至微音器處的音波訊號反應,經由處理得到音速、均方根音壓及頻率等,加速度計擺放位置同微音器,利用加速度計獲得之數據,探討聲音是否能藉由振動進行傳遞,並與微音器之數據進行比較。結果顯示波速部分在深度 10至 40cm之範圍內,音速介於 160至 210m/s之間,隨深度增加,速度隨之增加。均方根音壓的變化在敲擊試驗中,在超過距音源 45cm之後,微音器接收之訊號以非常緩慢的速度衰減,而加速度計測得訊號亦是如此。另外,本研究進行了對照之發聲試驗。音源的產生,係利用揚聲器播放,但音波並沒有大幅擾動砂土。發聲試驗之音源來自敲擊試驗之音源經錄製後由揚聲器播放,結果顯示發聲試驗中音波在砂土層傳播很快就會消散,在距音源 30cm後,幾無傳遞能量。說明當土層發生變位或錯動時,只要振動的量夠大,音波便能藉由振波向外傳遞至較遠處。
摘要(英) This research used wave signals measured from microphones and accelerometers to investigate transmission properties of sound waves and vibration waves generated by shock vibration or shear displacement in sand layer.
This research excavated a trench in the large testing pit, then pluviated sand into the trench with planned relative densities. Microphones and accelerometers were embedded in the prearranged locations during sand pluviation. Signals of sound waves and vibrations generated from vibration source were measured. By using the obtained data, sound speed, root mean square of sound pressure, and frequency were analyzed. Comparing the data of microphones and accelerometers to confirm whether the propagation of sound waves may rely on vibration or not. From the results of experiments, it is revealed that the propagation speed of sound waves is about 160~210m/s and it is getting faster with depth within the depth of 10~40cm. In the Beat tests, the values of root mean square of sound pressure, which received by microphones are attenuating slowly beyond the positions of 45cm away from the sound source. The signals received by the accelerometers have the same tendency.
In addition, speaker tests were performed in this research. Sound, which was recorded from beat test, was made by speaker as sound source, but this sound did not cause apparent vibration in the sand layer during the process of speaker test. From the results of these experiments, it is understood that the sound pressures made by tests decreased rapidly in sand layer, and showed a small stabilized value beyond the positions away from the sound source of 30 cm. It is also proved that soil layer may generate vibration and sound wave due to slide or movement of soil particles. If the generated energy of slide or movement is large enough, the sound wave may transmit away with vibration to a farther distance.
關鍵字(中) ★ 振波
★ 音波
★ 音速
★ 均方根音壓
★ 波傳
關鍵字(英) ★ sound wave
★ vibration wave
★ sound speed
★ root mean square of sound pressure
★ wave propagation
論文目次 中文摘要 II
英文摘要 III
目錄 IV
照片目錄 VIII
表目錄 IX
圖目錄 X
符號說明 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 1
1.3 論文內容 2
第二章 文獻回顧 3
2.1 聲音量測技術於大地工程之應用 3
2.1.1 聲音基本原理 3
2.1.2 波的參數 4
2.1.3音波基本參數 5
2.1.4音波傳遞速度 7
2.1.5 音波訊號之分析 9
2.1.5.1時間域分析 9
2.1.5.2頻率域分析 11
2.1.6 音射現象 11
2.1.7 音射源之定位 12
2.1.7.1 區域定位法 12
2.1.7.2 到達時間差定位法 13
2.1.7.3 三軸後德格蘭姆法 16
2.1.8 不穩定邊坡之音波量測 18
2.1.9 微音錐貫入試驗 19
2.1.10 土石流地聲特性之研究 21
2.2 波傳衰減特性 22
2.2.1 空氣中音波衰減特性 22
2.2.2 土層中振波衰減特性 23
2.3 前人試驗結果 25
2.4 未來應用 26
第三章 試驗土樣、儀器設備及試驗方法 43
3.1試驗土樣 43
3.2試驗儀器與相關設備 43
3.3 試驗方法及步驟 48
3.3.1 裝置防砂罩微音器之校正 49
3.3.2 淺層砂土中音波及振波波速量測試驗方法 50
3.3.3 敲擊試驗之量測與試驗方法 51
3.3.4 發聲試驗之量測與試驗方法 52
3.4 音波訊號處理 53
3.4.1 背景噪音之影響與校正 53
3.4.2 取樣定理 54
3.4.3 快速傅立葉轉換 55
第四章 試驗結果與分析 72
4.1 音速量測試驗 72
4.1.1 音速之探討 72
4.2 敲擊試驗中音波及振波在乾燥砂土訊號傳遞之量測 73
4.2.1 均方根音壓分析 73
4.2.1.1 背景噪音的濾除 74
4.2.1.2 水平向均方根音壓分析 75
4.2.1.3 垂直向均方根音壓分析 75
4.2.1.4土層中均方根音壓之衰減與分佈 76
4.2.2 頻率分析 76
4.2.3均方根音壓之衰減與頻率分佈之討論 77
4.2.4 加速度分析 78
4.3 發聲試驗中音波及振波在乾燥砂土訊號傳遞之量測 79
第五章 結論 111
5.1 結論 111
5.2 建議 112
參考文獻 113
參考文獻 1. 日本機械学会,岩石破坏力學とその応用,第101-115頁(1989)。
2. 方治國,「音洩檢測原理應用」,檢測科技,第十六卷,第一期,第4-9頁(1998)。
3. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央大學土木工程學系,中壢(2005)。
4. 李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,第51-58頁,台南(2003)。
5. 吳志鴻,「淺層砂土中音波傳遞特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
6. 吳銘德、周丹「探測岩石破裂的聲音以確定人工裂縫的方法」,國外測井技術,第八卷,第六期,第 19-22頁 (1993)。
7. 徐萬樁,噪音與振動控制,協志工業叢書,台北(1975)。
8. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地聲特性之實驗研究」,中國土木水利工程學刊,第十六卷,第一期,第53-63頁 (2004)。
9. 陳正興,朱惠君,「南科園區地盤振動衰減參數之量測」,南部科學園區振動防治策略研討會論文集,台南,第151-170頁(2000)。
10. 陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2型無線遙側泥石流警報器的研製」,第二屆全國泥石流學術會議論文集,第36-41頁(1991)。
11. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
12. 廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程研究所,台南(1993)。
13. 趙晉棠,通信原理,全華科技圖書股份有限公司,台北(1995)。
14. 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,台北(2005)。
15. 蘇德勝,噪音原理及控制,臺隆書店,台北(2003)。
16. Baker, L.J., and Winbow, G.A., Multipole P-wave logging in formations altered by drilling,” Geophysics, Vol. 53, No. 9, pp. 1207-1218 (1988).
17. Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction, pp. 72 (1961).
18. Bolt, B.A., Earthquakes: A Primer, Freeman, San Francisco, pp.241(1978).
19. Chen, S.T., “Full acoustic wave train in a laboratory model of a borehole,” Geophysics, Vol. 47, No. 11, pp. 1512-1520 (1982).
20. Clayton, C.R.I., Simons, N.E., and Matthews, M.C., Site Investigation, Intl Pubns, Westport (1982).
21. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic Emission Monitoring of Slope Instability : Development of an Active Waveguide System,” Proceedings of the Institution of Civil Engineers : Geotechnical Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
22. Ekimov, A., and Sabatier, J.M., “Vibration and sound signatures of human footsteps in building,” Journal of the Acoustical Society of America, Vol. 120, No. 2, pp. 762-768 (2006).
23. Ewing, W.M., and Jardetzky, W.S., Elastic Waves in Layered Media, McGraw-Hill Book Co., New York, pp. 380-381 (1957).
24. Gutowski, T.G. and Dym, C.L., “Propagation of Ground Vibration: A Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
25. Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
26. Hassall, J.R., and Zaveri, K., Acoustic Noise Measurements, Brüel&Kjær, Nærum, Denmark, pp.18-20(1979).
27. Hou, Z., Hera, A., and Shinde, A., “Wavelet-based structural health monitoring of earthquake excited structures,” Computer-Aided Civil and Infrastructure Engineering, Vol. 21, No. 4, pp. 268-279 (2006).
28. Hough, S.E., Earthshaking science: what we know (and don't know) about earthquakes, Princeton University Press, U.S.A., pp. 43-46 (2002).
29. Kageyama, K., Murayama, H., Uzawa, K., Ohsawa, L., Kanai, M., Akematsu, Y., Nagata, K., and Ogawa, T., “Doppler effect in flexible and expandable light waveguide and development of new fiber-optic vibration/acoustic sensor,” Journal of lightwave Technology, Vol. 24, No. 4, pp. 1768-1775 (2006).
30. Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., and Ma, K. F., “Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake,” Geophysical Research Letters, Vol. 33, L14306 (2006).
31. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, No. 2, pp. 115-126 (2000).
32. Koerner, R.M., McCabbe, W.M., and Lord, A.E., “Acoustic Emission Behavior and Monitoring of Soils,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp. 93-141 (1981).
33. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
34. Lecture Note, Basic Concept of Sound, Brüel&Kjær, Nærum, Denmark, pp.6-8 (1998).
35. Lord, H., Gatley, W.S., and Evensen, H.A., “Noise Control for Engineers,” McGraw-Hill Inc (1980).
36. Luo, X., Haya, H., Inaba, T., and Shiotani, T. “Seismic diagnosis of railway substructures by using secondary acoustic emission.” Soil Dynamics and Earthquake Engineering, Vol. 26, No. 12, pp. 1101-1110 (2006).
37. Massarsch, K.R., “Acoustic penetration testing,” Proceedings of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore (1986).
38. Muromachi, T., “Phono-sounding apparatus-discrimination of soil type by sound,” Proceedings of the First European Symposium on Penetuation Testing, Amsterdam, ESOPT-I, Vol. 21, pp. 110-112 (1974).
39. Nikolaev, A.V., Belyakov, A.S., Lavrov, V.S., and Zhigglin, A.D., “Geoacoustic monitoring as a means for investigating the state of the lithosphere and for earthquake forecasting,” Acoustical Physics, Vol. 51, No. SUPPL. 1, pp. S122-S130 (2005).
40. Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
41. Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No. 23, pp. 573-594 (1986).
42. Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
43. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
44. Smith, B.J., Peter, R.J., and Owen, S., Acoustic and Noise Control, Longman Group Limited, U.K., pp. 27-34 (1982).
45. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
46. Starr, E.A., “Noise measurement,” Noise Control Engineering, Vol. 9, No. 3, pp. 100-108 (1977).
47. Tanimoto, K., Takahashi, S., Kaneko, T., and Shiota, K., “Impulsive breaking wave forces on an inclined pile exerted by random waves.” Proceedings of the Coastal Engineering Conference, Vol. 3, pp. 2282-2302 (1987).
48. Tcheng, Y., “Foundations profonds en milieu pulverulent a diverses compacities,” Annales de I'Institut Technique du Batiment et des Travaux Publics, Sols et Fondations 54, pp. 219-220 (1966).
49. Technical Document, Microphone Handbook, Brüel&Kjær, Nærum, Denmark, pp.2-8(1996).
50. Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
51. Villet, W.C.B., “Acoustic emission during the static penetration of soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
52. Winbow, G. A., “Theoretical study of acoustic S-wave and P-wave velocity logging with conventional and dipole sources in soft formations,” Geophysics, Vol. 53, No. 10, pp. 1334-1342 (1988).
53. Worth, C.P., “Interpretation of In Situ Soil Test,” 24th Rankine Lecture, Geotechnique, Vol. 34, pp. 449-489 (1984).
指導教授 張惠文(Huei-wen Chang) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明