博碩士論文 943202038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.21.125.27
姓名 李宛諭(Wan-Yu Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 土壤吸力對緩衝材料飽和行為之影響及模擬研究
(The Influence of Soil Suction on the Saturation Behavior of Buffer Material)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技工業發展,核能為多數先進國家主要供電來源,對於核廢料之處置,國際間多以深地層處置進行最終處置。其中,緩衝材對於處置場的成敗扮演關鍵性角色,當緩衝材受到地下水與廢料衰變熱之影響,其行為所產生耦合效應,將對近場環境帶來重大影響,故本研究模擬緩衝材料受水份滲透及溫度升高的影響,進行實驗與數值模擬。文中分別進行日興土及BH膨潤土在25℃、40℃及60℃下進行濾紙法試驗與攝取水試驗,探討溫度變化下緩衝材之水分特性曲線與飽和度之變化。並利用實驗所得之參數,應用ABAQUS進行程式模擬。
結果顯示BH膨潤土持水能力較日興土佳,且土壤吸力隨環境溫度升高而降低。試體受到水份入侵時,其飽和度隨時間增長而趨近飽和,飽和時間與緩衝材厚度平方成正比,且溫度越高其飽和速率愈快,而BH膨潤土飽和速率較慢。不論吸力或飽和速率,BH膨潤土受溫度影響均較日興土小。程式模擬結果多與實驗值趨勢相近,考慮材料參數之影響的研究發現,當膠體含量與膠體回脹倍率增加時,會使滲透係數降低,導致飽和速率降低及孔隙比減小,而滲透係數與土壤-水分特性曲線越大,其試體飽和速率愈快。
摘要(英) With scientific and technological industrial development, nuclear energy supply the power source mainly for most advanced country. For final disposal of nuclear wastes, most countries adopted the deep geological disposal. Among the engineering barriers, buffer material is considered the key role to the success of deep geological disposal. As the buffer material will be influenced by groundwater intrusion and decay heat generated by the waste material, the coupling effects will bring great impacts on near-field environments. This study simulates the buffer material as affected by the permeation of moisture and temperature increases, using experimental and numerical techniques. Soil suction of Zhisin clay and Black Hill (BH) bentonite were determined using filter paper method and water uptake tests were conducted on the 2 bentonites at 25℃, 40℃ and 60℃.
The results show that soil suction of BH bentonite is higher than that of Zhisin clay. And soil suction was found to increase as the temperature decreases. In the saturation processes, the degree of saturation of bentonite increases with increasing time, and the higher the temperature is, the faster the specimen reaches saturation. Both soil suction and the rate of saturation speed for BH bentonite are less affected by temperature than Zhisin clay. Results of numerical simulation on water uptake test were found to close to the experimental observations. Increase in the gel content and gel swelling rate will cause reduction in hydraulic conductivity. And thus cause the rate of saturation to reduce.
關鍵字(中) ★ 飽和程序
★ 土壤-水分特性曲線
★ 緩衝材料
關鍵字(英) ★ Buffer material
★ Soil Water Characteristic Curve
★ Saturation processes
論文目次 摘要 I
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與內容 3
第二章 文獻回顧 6
2.1 高放射性廢棄物的處理 6
2.2 緩衝材的功能與效應 8
2.3 不飽和土壤的組成 13
2.4 土壤吸力理論與水分特性曲線 17
2.4.1土壤吸力理論 17
2.4.2 基質吸力 19
2.4.3土壤水分特性曲線 23
2.5 深地層處置場受地下水入侵與THMC耦合作用之影響 27
2.5.1深地層處置場受地下水入侵之影響 27
2.5.2 THMC耦合作用之影響 28
2.6 THMC相關研究 36
2.6.1熱學模擬 36
2.6.2水力模擬 37
2.6.3機械模擬 38
2.6.4化學傳輸模擬 38
第三章 試驗方法與程式模擬 40
3.1 緩衝材基本物理性質 40
3.1.1 BH膨潤土 40
3.1.2 日興土 40
3.2 濾紙法量測方法 42
3.2.1濾紙法理論背景 43
3.2.2 濾紙法校正 44
3.2.3 濾紙法量測土壤吸力 49
3.3 土壤-水分特性曲線試驗設計 52
3.4 攝取水試驗 57
3.4.1攝取水試體製作 57
3.4.2單向度攝取水試驗 58
3.5 管柱試驗 59
3.5.1 試驗設計 59
3.5.2 試驗方法 60
3.5.3 滲透係數 62
3.6 程式基礎理論 63
3.6.1 有效應力理論( effective stress theory ) 63
3.6.2 組成行為(constitutive behavior) 64
3.6.2.1 水反應(liquid response) 65
3.6.2.2 顆粒反應(grains response) 65
3.7 質量守恆(mass conservation) 69
3.7.1 連續方程式 69
3.8 孔隙水流特性 71
3.8.1 滲透係數(permeability) 71
3.8.2 土壤-水份特性曲線 72
3.8.3 回脹膠體(swelling gel) 74
3.8.4 水份回脹(moisture swelling) 75
3.9 元素網格與邊界條件 75
3.10 輸入參數 77
3.10.1 滲透係數 77
3.10.2 土壤-水份特性曲線 78
3.10.3材料性質 78
3.11 分析軟體 80
第四章 結果與分析 82
4.1 管柱試驗 82
4.2 濾紙法試驗 84
4.2.1 濾紙法校正結果 84
4.2.2 土壤-水分特性曲線 87
4.2.3 使用推估模式 91
4.2.4 溫度與吸力值之關係 95
4.3 攝取水試驗 99
4.4 程式模擬 113
4.4.1 套用MX-80材料參數模擬 113
4.4.2 推估緩衝材參數 116
4.4.2.1 推估日興土材料參數 116
4.4.2.2 推估BH膨潤土材料參數 127
4.4.3 土壤-水分特性曲線之敏感度分析 132
4.4.3.1 土壤-水份特性曲線斜率 133
4.4.3.2 進氣壓力值 136
4.5 案例分析 138
4.5.1模型建立 139
4.5.2 分析結果 142
4.6 分析模式改善 145
第五章 結論與建議 149
5.1 結論 149
5.2建議 150
參考文獻 152
參考文獻 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
王柏鈞,(2003),「緩衝材料之未飽和特性對核廢料最終處置系統熱傳模擬之影響」,碩士論文,國立中正大學應用地球物理研究所,嘉義。
台灣電力公司,(2000),我國用過核燃料長程處置:全程工作規劃書(2000版)。
林士哲,(2003),「金崙地區溫泉資源調查分析之研究」,碩士論文,國立成功大學資源工程研究所,台南。
馬正明,(2003),「核廢料散熱對核能污染物在粘土中傳輸的影響」第十屆大工程研討會,三峽,台北,第956-959頁。
清華大學原子科學研究院,核四議題,清華大學原子科學研究院網站,http://www.ess.nthu.edu.tw/~college/,2004。
莊文壽,洪錦雄及董家寶,(2000)「深層地質處置技術之研究」,核研季刊,第37期,第44-45頁。
許俊賢,(2003),「深層岩體熱力-水力-力學偶合行為之研究」,碩士論文,國立成功大學資源工程學系,台南。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
陳文泉、黃偉慶,(2002)「深地層處置緩衝材料熱-水力-機械-化學耦合作用探討」,核研季刊,第四十二期,第38-48頁。
陳炳坤,(2006),「高放射性廢棄物最終處置場緩衝材之回脹穩定性與微觀結構研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳朝旭,(2001),「用過核廢料深層地下處置設計之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳衛理,(1992),「用過核燃料直接處理」,核能季刊,第三期,第3-13頁。
單信瑜,(1997),「放射性廢料處置場緩衝回填材料物性及化性之介紹」, 核能研究所放射性廢料最終處置核種遷移與水文地質相關技術訓練研討會(第二期)講義。
萬憲銘,(1976),「台灣璋原及瑞美滑潤石黏土之礦物學特性」,礦冶,民國六十五年六月號,第68-79頁。
葉有財,(1994),「日本放射性廢料之永久處理」,核能天地,10月號,第26-27頁。
鄒蕙如,(2005),「最終處置場黏土障壁材料之傳輸行為研究」,碩士論文,國立中央大學土木工程系,中壢。
潘以文等,(2000),「極深覆岩隧道周圍岩盤之溫度與熱應力場」,2000岩盤工程研討會,第233-242頁,Nov. 16-17。
蕭宗璿,(2006),「不飽和土壤濕化水分特性曲線影響因子之研究」,碩士論文,國立中央大學土木工程系,中壢。
蕭興仁,(1992),覆襯土規範之研究,放射性待處理物料管理處八十一年度專題研究計劃期末報告,第93頁。
戴豪君,(2002),「深層岩體熱力-水力-力學偶合行為之初步研究」,碩士論文,國立成功大學資源工程學系,台南。
謝馨輝,(2002),「核廢料地下處置之熱傳導及初步熱應變分析」,碩士論文,國立中央大學土木工程研究所,中壢。
蘇依豪,(2005),「最終處置場緩衝材料地下水入侵模擬影響」,碩士論文,中央大學土木工程研究所碩士論文,中壢。
ABAQUS Analysis User’s Manual Vol. I, Section 6.7.1
ABAQUS Theory Manual Vol. I, Section 2.8.1
ABAQUS Theory Manual Vol. I, Section 2.8.4
Agus, S. S., Leong., E. C., and Rahardjo, H. (2001). “Soil-water characteristic curve of Singapore residual soil,” Geotechnical and Geological Engineering, Vol. 19, pp. 285-309.
ASTM Standard (2000). D5298-94: Standard Test Method for the Measurement of Soil Potential (Suction) Using Filter Paper, Annual Book of ASTM Standards, Vol. 04.09, ASTM International, West Conshohocken, PA, pp. 1113-1118.
Bao, C. G., Gong, B. W., and Zhan, L. T. (1998). “Properties of Unsaturated Soils and Slop Stability of Expansive Soil,” USAT98 Keyntoe Lecture, pp. 1-99.
Barden L. (1965). “Consolidation of Compacted and Unsaturated Clay,” Geotechnique, Vol. XV, No. 3, pp. 267-286.
Bear, J. (1979). Hydraulics of Groundwater, McGraw-Hill, Seattle, USA .
Bear, J. (1972). Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, Dover, New York.
Borgesson, L. (1999). Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. SKB Technical Peport TR-99-41.
Borgesson, L., Fredrikson, A., and Johannesson, L. E. (1994). “Heat Conductivity of Buffer Materials,” SKB Report, Lund, Sweden.
Branley, W., Graham, J., Tang, G. X., and Dixon, D. (1998). “Influence of pressure, saturation, and temperature on behavior of unsaturated sand-bentonite,” Can. Geotech, J. Vol. 35, pp. 194-205.
Bulut, R., Lytton, R. L., and Wray, W. K. (2001). “Soil suction measurements by filter paper,” Geotechnical Special Publication, No. 115, pp. 243-261.
Cho, W. J., Lee, J. O., and Kang, C. H. (2000). “Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository,” Annals of Nuclear Energy, Vol. 27, pp. 1271-1284.
Croney, J. D. and Coleman, J. D. (1948). “Soil thermodynamics applied to the movement of moisture in road foundations,” Proc. 7th Int. Cong. Appl. Mech., Vol. 3, pp. 163-177.
Desai, C. S. (1975). “Finite element methods for flow in porous media,” in Finite Elements in Fluids, Vol. 1, Wiley, London, pp. 157-181.
Edlefsen, N.E., and Adserson, A.B.C. (1943). “Thermodynamics of soil moisture,” Hilgardia, Vol. 15, pp. 31-298.
Fredlund, D. G. and Raharjo, H. (1993). Soil Mechanics for Unsaturated Soils, John Wiley & Sons, New York.
Fredlund, D. G. and Xing, A. (1994). “Equations for the woil-water characteristic curve,” Candian Geotechnical Journal, Vol. 31, pp. 521-532.
Fredlund, D. G. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons, New York, pp. 110-111.
Fredlund, D. G., and Morgenstern, N. R. (1977). “Stress state variables for unsaturated soils,” Journal of the Geotechnical Engineering Division, ASCE, 103, pp. 447-466.
Geneste, P., Raynal, M., Atabek, R., Dardaine, M., and Oliver, J. (1990). “Characterization of a french clay barrier and outline of the experimental programme,” Engineering Geology, Vol. 28, pp. 443-454.
Gera, F., Hueckel, T., and Peano, A. (1996). “Critical issues in modeling the long-term hydro-thermo-mechanical performance of natural clay barriers,” Engineering Geology, Vol. 41, pp. 17-33.
Gillham, R. W., and Cherry, J. A. (1982). “Contaminant migration in saturated unconsolidation geologic deposit,” Geologic Society of America, Vol. 31, pp. 189.
Hillel, D. (1980). Fundamentals of Soil Physics, Academic Press, New York.
Hudson, J. A., Stephansson, O., Andersson, A., Tsang, C.-F., Jing, L. (2001). “Coupled T-H-M issues relating to radioactive waste repository design and performance,” International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 143-161.
Krahn, and Fredlund, D. G. (1992). “On total matric and osmotic suction,” J. Soil Sci., Vol. 114, No. 5, pp. 339-348.
Lu, N and Likos, W. J. (2004). Unsaturated Soil Mechanics. John Wiley & Sons, Inc., New Jersey.
Meyer, D., and Howard, J. J. (1983). Evaluation of Clays and Clay Minerals for Application to Repository Sealing, Office of Nuclear Waste Isolation Technical Report ONWI-486, pp. 12-30.
NEA (1985). Technical Appraisal of the Current Situation in the Field of Radioactive Waste Management, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
NEA (1991). Disposal of Radioactive Waste: Can Long-term Safety Be Evaluated? An International Collective Opinion, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
NEA (1995). The Management of Long-lived Radioactive Waste: The Environmental and Ethical Basis of Geological Disposal. A Collective Opinion of the NEA Radioactive Waste Management Committee, Nuclear Energy Agency, Organization for Economic Co-operation and Development.
Nguyen, H. V., and Durso, D. F., (1983). “Absorption of water by fiber webs: an illustration of diffusion transport,” Tappi Journal, Vol. 66, no. 12.
Oscarson, D. W. (1994). “Comparsion of measured and calculated diffusion coefficients for iodide in compacted clays.” Clay Minerals, 29, pp. 145-151.
Pilip, J. R., and de Vries, D. A. (1964), Moisture movement in porous materials under temperature gradients. Transaction, American Geophysical Union, 38, pp. 222-232.
Pusch, R. (1999). Clay colloid formation and release from MX-80 buffer. SKB Technical Report TR-99-31.
Pusch, R. (2001). The Buffer and Backfill Handbook Part 2: Materials and Techniques, SKB TR-02-12, pp. 13-15.
Rabhakrishna, H. S., and Chan, H. T. (1989). “Thermal and physical properties of candidate buffer-backfill materials for a nuclear fuel waste disposal vault,” Can. Geotech. J., Vol. 26, pp. 629-639.
Rutqvist, J., and Tsang, C.-F. (2003). “Analysis of thermal-hydrologic -mechanical behavior near an emplacement drift at Yucca Mountain.” Journal of Contaminant Hydrology, Vol. 62-63, pp. 637-652.
Rutqvist, J., Wu, Y.-S., Tsang, C.-F. and Bodvarsson, G. (2002). “A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock.” International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 429-442.
Savage, D. (1995). The scientific and regulatory basis for the geological disposal of radioactive waste, John Wiley & Sons, pp. 80.
Sakashita, H., and Kumada, T. (1998). “Heat transfer model for predicting thermal conductivity of highly compacted bentonite,” Journal of Japan Atomic Society, Vol. 40, pp. 235-240.
Sillers, W.S., Fredlund, D.G., and Zakerzadeh, N. (2001). Mathematical attributes of some soil-water characteristic curve models. Geotechnical and Geological Engineering, Vol. 19, pp. 243-283.
Tanaka, T., and Fillmore, D. J. (1979). “Kinetics of swelling of gels,” Journal of Chemical Physics, vol. 70, pp. 1214-1218.
Tariq, S. M. (1987). “Evaluation of Flow Characteristics of Perforations Including Nonlinear Effects With the Finite Element Method,” SPE Production Engineering, pp. 104-112.
Tiktinsky, D. H. (1988). “Numerical parametric sensitivity study of thermal and mechanics properties for a high level nuclear waste repositroy,” Proc. Of the 29th U.S. Symp. On Rock Mech., pp. 429-439.
van Genuchten, M. T. (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J., Vol. 44. pp. 892-898.
Viller, M. V., and Cuveas, J. (1996). “Effect of heat/water flow interaction on compacted bentonite: Preliminary results,” Engineering Geology, Vol. 41, pp. 125-133.
Visser W. C. (1966). “Progress in the knowledge about the effect of soil moisture content on plant production,” Inst. Land Water Management Wageningen Nethherland, Tech. Bull. 45.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明