博碩士論文 90448002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.218.10.21
姓名 林君瀌(Jun-Biao Lin)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 多資產美式選擇權之評價及其應用
(The Algorithms for Valuing American Style Multivariate Contingent Claims: Applications for ESO and other Derivatives)
相關論文
★ 最適指數複製法之自動化建置:以ETF50為例★ 台灣公債市場與台幣利率交換交易市場動態關聯性之研究
★ 企業貸款債權證券化--信用增強探討★ 停損點反向操作指標在台灣期貨市場實證
★ 投資型保單評價-富邦金吉利保本投資連結型遞延年金保險乙型(VANB5)★ 停損點反向操作指標在台灣債券市場實證
★ 匯率風險值衡量之實證研究-以新台幣、日圓、英鎊、歐元匯率為例★ 探討央行升息國內十年期指標公債未同步上升之原因
★ 信用風險模型評估—Merton模型之應用★ 資產管理公司購買不動產擔保不良債權評價之研究
★ 股票除息對期貨與現貨報酬之影響★ 主權基金的角色定位與未來影響力之研究
★ 我國公債期貨之研究分析★ 用事件研究法探討希臘主權債信危機-以美國及德國公債為例
★ 企業避險及財務操作之實例探討★ 台灣期貨市場之量價交易策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上,當標的資產為一特殊分配時,將增加衍生性商品的訂價困難度。Camara 和 Chung (2006) 所提出的轉換的二元樹模型 (Transformed Binomial Tree) 解決了部份難題。然而其模型對處理多資產標的商品仍有不足。因此,本研究提出三種方法,嘗試在轉換為常態架構 (Transformed Normal Method) 下,對多資產標的商品訂價。結果發現,在單一商品下,馬可夫鏈(Markov Chain Model)可得到相對於轉換的三元樹模型 (Transformed Trinomial Tree) 較佳的結果。而當延申到多資產時,Sobol序列馬可夫鏈 (Sobol Sequence Markov Chain Model) 無論在長天期或短天期的衍生性金融商品,皆可獲得最佳的結果。此外,本研究亦將此方法應用至目前熱門的二種商品:員工認股權證(Executive Stock Option) 和氣候選擇權 (Weather Derivatives)。以增加本研究之廣度。
摘要(英) This dissertation develops three numerical algorithms for pricing European and American multivariate contingent claims. One approach is a multivariate transformed trinomial model. This model is an extension of the Camara and Chung (2006) transformed-binomial model with one underlying asset and a discrete-time version of Schoder (2004) model for pricing European-style options. However, unlike Schoder’s model, our model can easily handle American-style multivariate contingent claims. Another one is the Markov Chain approach provided by Duan and Simonato’s (2001). The other approach is an extended Markov Chain approach which takes Sobol sequences into Duan and Simonato’s (2001) Markov Chain model to accelerate convergence speed. We use numerical examples to show how to use these three methods to value various types of multivariate contingent claims, such as digital options and Executive Stock Option (ESO) and Weather Derivatives.
關鍵字(中) ★ 美式選擇權
★ 多資產
關鍵字(英) ★ transformed-trinomial approaches
★ ESO
★ an extended Markov Chain approach
★ Weather Derivatives
論文目次 Abstract ……………………………………………………………………….…….Ⅰ
Contents……………………………………………………………………………..Ⅳ
List of Figures………………………………………………………………………Ⅶ
List of Tables………………………………………………………………………..Ⅷ
1 Introduction……………………………………………………………………..1
1.1 Motivation…………………………………………………………………..1
1.2 Objectives…………………………………………………………………..2
2 Literature Review………………………………………………………………4
2.1 Methodology………………………………………………………………..4
2.2 Executive Stock Options……………………………………………………5
2.3 Weather Derivatives………………………………………………………...7
3 Methodology
3.1 One Underlying Asset………………………………………………………9
3.1.1 The Transformed-Trinomial Model…………………………………9
3.1.2 The Markov Chain Model…………………………………………15
3.2 Models for Pricing options with Multiple Underlying Assets……………..18
3.2.1 The Transformed-Trinomial Model………………………………..18
3.2.2 The Standard Markov Chain Method……………………………...22
3.2.3 The Sobol Markov Chain Method…………………………………22
4 Numerical Examples and Convergence………………………………………27
4.1 The Case of Option with one Underlying Asset…………………………...27
4.2 The Case of Option with two Underlying Assets………………………….29
5 Executive Stock Options…………………………..…………………………..40
5.1 Introduction……………………………………….……………………….40
5.2 Economic Settings…………………………………………..…………….41
5.3 Numerical Results…………………………………………………………44
6 Weather Derivatives…………………………………………………………..59
6.1 Introduction………………………………………………………………..59
6.2 Economic Settings…………………………………………………………61
6.3 Numerical Results…………………………………………………………64
7 Concluding Remarks and Future Research………………………………….70
Reference…………………………………………………………………………….72
參考文獻 [1] Alaton, P., Djehiche, B. and Stillberger, D. (2002), “On Modelling and Pricing Weather Derivatives”, Applied Mathematical Finance 9, pp.1-20.
[2] Aggarwal, R. K. and Samwick, A. A. (1999a), “Executive Compensation, Strategic Competition, and Relative Performance Evaluation: Theory and Evidence”, Journal of Finance, Vol. 54, pp.1999-2043.
[3] Aggarwal, R. K. and Samwick, A. A. (1999b), “The Other Side of the Tradeoff: The Impact of Risk on Executive Compensation”, Journal of Political Economy, Vol. 107, pp.65-105.
[4] Barro, J. R. and Barro R. J. (1990), “Pay, Performance and Turnover of Bank CEOs’ “, Journal of Labor Economics, Vol. 8, pp.448-81.
[5] Boyle, P.P., Evnine, J., and Gibbs, S. (1989), “Numerical Evaluation of Multivariate Contingent Claims”, The Review of Financial Studies 2, pp.241-250.
[6] Boyle P., Broadie, M. and Glasserman P. (1997), “Monte Carlo Methods for Security Pricing”, Journal of Economic Dynamics and Control, pp.1267-1321.
[7] Brennan, M. J. (1979), “The Pricing of Contingent Claims in Discrete Time Models”, Journal of Finance 34, pp.53-68.
[8] Camara, A. (2001), “ The Pricing of Relative Performance Based Incentives for Executive Compensation”, Journal of Business Finance and Accounting 28, pp. 1149-1191
[9] Camara, A. (2003), “A Generalization of the Brennan-Rubinstein Approach for the Pricing of Derivatives”, Journal of Finance 58, pp.805-819.
[10] Camara, A. (2005), “Option Prices Sustained by Risk-Preferences”, Journal of Business 78, pp.1683-1708.
[11] Camara, A. and Chung , S.L. (2006), “Options Pricing for the Transformed-binomial Class”, Journal of Futures Markets 26, pp.759-787.
[12] Cao, M., and Wei, J., “Weather Derivatives Valuation and Market Price of Weather Risk”, Journal of Futures Markets. Vol 24, No. 11, pp.1065-1084
[13] Challis, S. (1999), “Bright Forecast for Profits,” Reactions, June.
[14] Cox, J., Ross, S. and Rubinstein, M. (1979), “Option Pricing: A Simplified Approach”, Journal of Financial Economics 7, pp.229-263.
[15] Detemple, J., and Sundaresan, S. (1999), “Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach”, The Review of Financial Studies Vo.12, pp.835-872.
[16] Dichel, B. (1998a), “Black-Scholes won’t do”, Risk October Edition, pp.8-9.
[17] Dichel, B. (1998b), “At last: a Model for Weather Risk”, Risk Energy and Power Risk Management, March Edition, pp.20-21.
[18] Duan, J. C. and Simonato, J.G.. (2001), “American Option Pricing Under GARCH by a Markov Chain Approximation.” Journal of Economics Dynamics and Control 25, pp.1689-1718.
[19] Duan, J. C. and Gauthier, G. and Simonato, J.G.. (2001), “ Numerical Pricing of Contingent Claims on Multiple Assets AND/OR factors - A Low-Discrepancy Markov Chain Approach”, Working paper.
[20] Duan, J.C. and Lin, J.B. (2007), “ Markov Chain in Term Structure”, Working paper.
[21] Ekvall, N. (1996), “A lattice Approach for Pricing of Multivariate Contingent Claims”, European Journal of Operational Research 91, pp. 214-228.
[22] Gibbons, R. and Murphy, K.J. (1990), “Relative Performance Evaluation for Chief Executive Officers”, Industrial and Labor Relations Review, Vol. 43, pp.30S-51S.
[23] Galanti S., Jung, A. (1997), “Low-Discrepancy Sequences: Monte Carlo Simulation of Option Prices”, Journal of Derivatives, pp.63-83.
[24] Garen, J. (1994), “Executive Compensation and Principal-Agent Theory”, Journal of Political Economy, Vol.102, pp.1175-99.
[25] Hall, B. J., and Murphy, K.J. (2002), “Stock Options for Undiversified Executives”, Journal of Accounting and Economics 33, pp. 3-42.
[26] Hanley, M. (1999), “Hedging the Force of Nature”, Risk Professional, 5, July/August, pp.21-25.
[27] Huddart, Steve and Lang, M. (1996), “Employee Stock Options Exercises: an Empirical Analysis”, Journal of Accounting and Economics 21, pp.5-43
[28] Janakiraman, S.N., Lambert R.A.and Larcker D.F. (1992), “An Empirical Investigation of the Relative Performance Evaluation Hypothesis”, Journal of Accounting Research, Vol. 30, pp.53-69.
[29] Jiang, J.X.F. and Brige, J.R.(2004), “Comparisons of Alternative Quasi-Monte Carlo Sequences for American Option Pricing”, Working Paper
[30] Johnson, N.L. (1949), “Systems of Frequency Curves Generated by Methods of Translation”, Biometrika, Vol. 36, No. 1/2, pp.149-176.
[31] Johnson, S.A.and Tian, Y.S. (2000a), “Indexed Executive Stock Options”, Journal of Financial Economics, Vol. 57, pp.35-64.
[32] Joy, C., Boyle, P.P. and Tan K.S. (1996), “Quasi-Monte Carlo Methods in Numerical Finance”, Methodologies and Applications for Pricing and Risk Management, Vol 24, pp.269-280.
[33] Jung, A. (1998), “Improving the Perfromance of Low-Discrepancy Sequences”, Journal of Derivatives, pp.85-95.
[34] Kamrad, B. and Ritchken, P. (1991), “Multinomial Approximating Models for Options with k State Variables”, Management Science, Vol. 37, NO. 12, pp.1640-1652.
[35] Kole, S. (1997), “The Complexity of Compensation Contracts”, Journal of Financial Economics 43, pp.79-104.
[36] Leggio K.B. and Lien, D. (2002), “Hedging Gas Bills with Weather Derivatives”, Journal of Economics and Finance 26, pp.88-100.
[37] Lucas, R.E. (1978). “Asset Prices in an Exchange Economy”, Econometrica, 46, pp.1429-1445.
[38] Marsh, T. A. and Merton, R. (1987), “Dividend Behavior for the Aggregate Sotck Market”, Journal of Business, 60, pp.1-40.
[39] Moro, B. (1995), “The Full Monte”, Risk 8, pp.57-58
[40] Murphy, K. (1985), “Corporate Performance and Managerial Remuneration”, Journal of Accounting and Economics, Vol. 7, pp.11-42.
[41] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992), Numerical Recipes in C, Second Edition, Cambridge University Press. Cambridge, UK.
[42] Rubinstein, M. (1991), “Pay Now, Choose Later”, Risk 4, pp.13
[43] Rubinstein, M. (1994), “Implied Bionmial Trees”, Journal of Finance 49, pp. 771-818.
[44] Schroder, M. (2004), “Risk-neutral Parameter Shifts and Derivatives Pricing in Discrete Time”, Journal of Finance, Vol. 59, Iss. 5, pp.2375-2401.
[45] Silva, M.E. (2002), “Quasi Monte Carlo in Finance: Extending for High Dimensional problems”, Resenha da BM&F.
[46] Wicksell,S.D. (1917), Ark. Mat. Astr. Fys. 12, no. 20.
指導教授 張傳章(Chuang-Chang Chang) 審核日期 2007-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明