博碩士論文 87443003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.216.237.210
姓名 蔣肇慶(Jaw-Ching Chiang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 定額支付制度下病例醫令之合適性研究
(Study on the Fixed Amount Payment’s Order Items)
相關論文
★ 網路合作式協同教學設計平台-以國中九年一貫課程為例★ 內容管理機制於常用問答集(FAQ)之應用
★ 行動多重代理人技術於排課系統之應用★ 存取控制機制與國內資安規範之研究
★ 信用卡系統導入NFC手機交易機制探討★ App應用在電子商務的推薦服務-以P公司為例
★ 建置服務導向系統改善生產之流程-以W公司PMS系統為例★ NFC行動支付之TSM平台規劃與導入
★ 關鍵字行銷在半導體通路商運用-以G公司為例★ 探討國內田徑競賽資訊系統-以103年全國大專田徑公開賽資訊系統為例
★ 航空地勤機坪作業盤櫃追蹤管理系統導入成效評估—以F公司為例★ 導入資訊安全管理制度之資安管理成熟度研究-以B個案公司為例
★ 資料探勘技術在電影推薦上的應用研究-以F線上影音平台為例★ BI視覺化工具運用於資安日誌分析—以S公司為例
★ 特權帳號登入行為即時分析系統之實證研究★ 郵件系統異常使用行為偵測與處理-以T公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 醫療院所的市場競爭日趨劇烈,醫院經營決策者在面臨此複雜的決策問題時,除了本身專業知識與過去的經驗外,必須應用資訊技術,以協助解決問題及輔助制訂決策之機制。自實施全民健保之後,醫療院所面臨著財務的壓力與外界的競爭力,可謂是有增無減。因此,如何提升醫院的競爭力,取得醫療市場的利基,是醫院經營決策者的任務。
資料開採(Data Mining)係在豐富的資料庫中,搜尋出有價值之隱藏資料,並且加以分析,擷取有意義且有價值的資訊,或是歸納出結構化的模型,作為經營決策者決策時之參考。當資料開採已經逐漸成為企業的核心時,經營決策者要知道的是運用此技術實現在組織內,將組織的資料予以適當的分析及製作決策模式,提升在企業經營的利基。
因此,在醫療市場的競爭之下,在定額支付制度下的病例,醫令執行項目內容合適性與費用的合理性問題,即非常重要。因此,我們可以藉著資料開採的技術設計出基本醫令群(Basic Order Group, BOG),而予以解決。所以,我們提出以分解法(Decomposition)為基本構想的SFLI (standing for Suitable and Frequent Large Itemsets) 演算法尋找出雛型基本醫令群。為了更能準確地計算及驗證,因此我們再使用以自組織映射圖為主的基本醫令群演算法尋找相似基本醫令群做比較。再分別使用相對強度(Relative Strength)、趨近值(Approach Value)及值比率(Value Rate)三組的分別計算,產生出初稿型基本醫令群;接著,透過費用評估的「差異比(Different Rate)的驗證」。結果評估顯示,三組產生的基本醫令群,皆合乎成本效益。因此,三組中任一方法皆可達到我們的目標。
同時,此基本醫令群非常具彈性,其一、該基本醫令群之子集合的組合亦可適用(減少醫令),其二、視病患的病情予以調整(增加醫令)。綜合言之,基本醫令群的產生,不但可以協助醫療支付單位在定額支付制度下的醫令項目研究,如精確的計算探討出住院(或門診)定額支付病例的必須執行基本診療醫令項目及門診AP-DRGs制給付基準之醫令的研究;而且在醫院方面,可以節省不必要的處置與成本支出,提升營運的績效;對醫師診療開立醫令而言,將更具成本的觀念,提升醫師之服務績效;於病患方面,可以獲得適當的診療,免除不必要的檢驗、藥品及處置,得到就醫權益的保障。
因此,如何將資料開採的理論與實務導入醫療院所,是資訊管理的新議題;希望藉此研究能提供資料開採在醫療產業的新思維。即將此學術上的研究,帶給實務上的重要參考以達相輔相成之效。
摘要(英) Maintaining a financial balance given limited medical payments is essential for health insurance payment units and hospitals. The Bureau of National Health Insurance (BNHI) implemented the Prospective Payment System of the Global Budget System to assist hospitals in planning and controlling medical care costs and service quality. Meanwhile, the BNHI also devised various plans for strengthening the operational utilization of medical resources, such as Case Payment System. This system has two types of orders; one is basic required examinations and treatments, and the other is option. In this Case Payment System, hospitals must execute 65% basic required examinations and treatments. Under this condition, it is impossible to understand how ‘65% of basic required examinations and treatments’ are calculated? Is the ‘35% of exanimations and treatments’ unimportant? This study suggested SFLI (standing for Suitable and Frequent Large Itemsets) algorithm to solve the suitable number of necessary medical order items. The algorithm was based upon decomposition. Prototyping and Similar Basic Order Group (BOG) were generated by SFLI and SOM algorithm respectively. Acting on relative strength, approach value and value rate, draft BOG were generated using these Prototyping BOG and Similar BOG. The SFLI algorithm employed decomposition method. This makes the suitable frequent and large itemsets processed faster, and reduced CPU time of no generating candidate itemsets. Therefore, this performance was the more better of the Apriori and FP_Tree algorithm. Meanwhile, the inside of the draft BOG’s elements, which are order items, were allowed to employ a reporting fee to calculate the payments of every draft BOG. This study compared and tested statistical hypotheses between the experiment contrast payment for every draft BOG and the health insurance reporting payments of each hospital level. Through verification of different rate, draft BOG were transformed to BOG that had full of cost-benefit. Therefore, the BOG can not only assist payment units in reducing costs, but also can assist hospitals in operating efficiently using the Fixed Amount System. Consequently, this study demonstrates a standard of payment for current and future basic and suitable order items of Fixed Amount System references.
關鍵字(中) ★ SFLI演算法
★ 分解法
★ 定額支付
★ 基本醫令群
★ 資料開採
關鍵字(英) ★ Fixed Amount system
★ decomposition
★ SFLI algorithm
★ Basic Order Group
★ Data Mining
論文目次 第壹章 緒論
第一節 研究背景
第二節 研究動機
第三節 研究問題與目的
第四節 論文結構
第貳章 相關文獻探討
第一節 資料開採在醫療資訊之相關研究
第二節 基本醫令群之相似研究
第三節 關連式規則與自組織映射圖
第四節 定額支付制與總額預算制
第參章 研究模式與方法
第一節 研究模式
第二節 雛型基本醫令群(Prototyping Basic Order Group)
第三節 相似基本醫令群(Similar Basic Order Group)
第四節 初稿型基本醫令群(Draft Basic Order Group)
第五節 基本醫令群--差異比的驗證
第肆章 SFLI演算法的實驗
第一節 實驗設計及說明
第二節 結果分析評估
第五章 基本醫令群的分析評估與檢定
第一節 樣本資料的基本統計敘述
第二節 雛型基本醫令群與相似基本醫令群的產生
第三節 初稿型基本醫令群的產生
第四節 各初稿型基本醫令群的費用計算
第五節 基本醫令群的評估分析與檢定
第陸章 結論與繼續之研究方向
第一節 結論
第二節 應用
第三節 研究限制
第四節 未來之繼續研究
參考文獻
參考文獻 中文部分
1. 王復中(2000):健保醫療費用審查自動化之研究。國立政治大學資訊管理研究所碩士論文。
2. 江士彥(2001):醫療顧客關係管理之顧客需求與滿意度分群分析-以國內某準醫學中心為例。元智大學資訊管理學系碩士論文。
3. 行政院衛生署(2002):中華民國公共衛生年報。行政院。
4. 李淑芬(2001):臨床路徑之建立機制-應用資料採礦技術。東海大學工業工程學系碩士論文。
5. 吳恆睿(1998):中醫院揀藥儲位規劃之研究。逢甲大學工業工程學系碩士論文。
6. 吳宗藩與謝清佳(1998):資訊管理理論與實務。智勝,台北。
7. 吳國禎(1999):資料探索在醫學資料庫之應用。中原大學醫學工程學系碩士論文。
8. 卓文福(1999):應用資料採礦於基因體之重複序列資料庫。國立中央大學資訊工程研究所碩士論文。
9. 林信忠(1999):資料挖掘技術應用於健保醫療費用稽核之研究。私立元智大學管理研究所碩士論文。
10. 周宣光與王復中(2000),「全民健保醫療費用審查自動化研究」,第十一屆全國資訊管理學術研討會,高雄中山大學。
11. 周賢昭(1998):以資料礦探採技術發展臨床路徑之研究。國立中山大學資訊管理學系碩士論文。
12. 邱俊德(1998):應用自組織映射圖於影像壓縮。私立大葉大學電機工程研究所碩士論文。
13. 張佳祺(1998):論病例計酬支付制度對骨科住院醫療利用情形之影響分析。國立陽明大學衛生福利研究所碩士論文。
14. 張錦文、譚開元、黃佳經(1993):醫院管理。水牛出版社,台北。
15. 莊利瑩(2000):資料挖掘機制在臨床路徑之應用。私立東海大學工業工程系碩士論文
16. 梁水金(2001):建立一個Web-based資料挖掘系統提供藥物交互作用資訊查詢。逢甲大學資訊工程學系碩士論文。
17. 健保局(2000),http://www.nhi.gov.tw。
18. 陳世源(1999):資料採礦技術在病例與藥品關連性之研究。國立中山大學資訊管理學系研究所碩士論文。
19. 陳冠華(2001):藉由顧客關係管理方法提升門診病患的醫療服務品質~以某區域醫院高齡慢性病患為例。雲林科技大學工業工程與管理研究所碩士班論文。
20. 陳怡秀(1996):自然生產論病例計酬制對醫療資源耗用之影響-以三家醫學中心為例。國立台灣大學公共衛生學系碩士論文。
21. 陳偉宏(2001):論病例計酬支付制度對醫院財務績效與經營績效關聯性之研究。國立政治大學會計學系碩士論文。
22. 陳清坤(2002):構造以中醫論病情分析決策系統。私立南華大學資訊管理學系碩士班碩士論文。
23. 陳稼興(1999):人工智慧講義。中央資訊管理系。
24. 連麗華(2001):合理門診量與藥價基準之因應─知識發現與行為回饋系統。台北醫學院醫學資訊研究所碩士論文。
25. 郭文嘉(2000):影像搜尋及超音波乳癌診斷之研究。國立中正大學資訊工程研究所博士論文。
26. 郭振宗(1999):微生物類別診斷與抗生素用藥決策支援系統。屏東科技大學資訊管理系碩士論文。
27. 黃仁貴(2001):以叢集分析技術探討病患就診屬性與看診時間之關係。台北醫學院醫學資訊研究所碩士論文。
28. 黃昱瞳(2000):全民建保實施牙醫總額預算制度對於醫療資源分布的影響評估。國立台北護理學院醫護管理研究所碩士論文。
29. 葉怡成(2000):類神經網路模式應用與實作。儒林圖書有限公司,台北。
30. 楊培銘(1988):慢性B型肝炎之免疫學研究。台灣大學臨床醫學研究所博士論文。
31. 廖珮茹(2001):論病例計酬制實施下風險分攤管理對醫療資源耗用影響之研究。私立學長庚大學管理學研究所碩士論文。
32. 廖翊舒(2000):牙科總額制度對醫療價量之影響。國立陽明大學醫務管理研究所碩士論文。
33. 廖雅郁(2001):應用資料探採於我國西藥行銷之研究。國立交通大學經營管理研究所碩士論文。
34. 劉慧心(1999):牙醫師對推動牙醫總額支付制度過程公會運作之態度研究。國立陽明大學衛生福利研究所碩士論文。
35. 蔣肇慶與林熙禎(1999),「資料開採在醫療資訊的探討」,第10屆國際資訊管理學術研討會,頁135~142。
36. 蔣肇慶與林熙禎(1999),「資料開採在醫療資訊的研究」,醫療資訊雜誌,第九期,頁71~92
37. 蔣肇慶與林熙禎(2002),「論病例計酬下醫令執行項目內容之合理性研究-APORES模式」,醫療資訊雜誌,第十四期,頁01~16。
38. 蔡清元(1998):自走型機器人視覺導引抓取任務之研究。國立成功大學機悈工程研究所碩士論文。
39. 戴桂英(1998),「論病例計酬支付制度之現況與未來發展」,中華民國醫院協會八十七年會員大會學術活動講義,p100~p113。
40. 蕭秀如(1999):牙科總額支付制度試辦計劃效果之初探-以中央健康保險局台北分局轄區範圍內之牙科醫療院所為例。國立陽明大學醫務管理研究所碩士論文。
41. 藍中賢與詹前隆(2000),「結合模糊及合理論與貝氏分類法之資料探勘技術」,第十一屆全國資訊管理學術研討會,高雄中山大學
42. 韓欽銓與黃崇勝(2001),「資料探勘技術應用於輔助病患看診指引之研究」,第七屆資訊管理研究暨實務研討會,台北。
43. 韓揆(2001),「土、洋DRGs—全民建保論病例計酬如何為繼 」 ,醫務管理期刊,第二卷第三期,pp27~45。
44. 蘇友珊(1998):全民建保論病例計酬之處方型態-以自然生產與剖腹生產為例。國立陽明大學衛生福利研究所碩士論文。
英文部分
1. Abston, Karen Crowley, T. Allan Pryor, & Peter J, Hang (1997), “Inducing Practice Guidelines from a Hospital Database,” The Jouranal of the American Medical Informatics Association, JAMIA
2. Agrawal, Rakesh, Ashish Gupta and Sunita Sarawagi (2000), “Modeling Multidimensional Databases,” http://www.almaden.ibm.com/.
3. Agrawal, Rakesh, J. Gehrke, D. Gunopulos, and P. Raghavan (1998), “Automatic subspace clustering of high dimensional data for data mining applications”, SIGMOD'98.
4. Agrawal, Rakesh, and Ramakrishnan Srikant (1994), “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th VLDB Conference, Santiago, Chile.
5. Agrawal, Rakesh, Tomasz Imielinski, and Arun Swami (1993), “Database Mining: A Performance Perspective,” IEEE Trans. On Knowledge and Data Engineering, vol. 5, no. 6, pp. 914-925, Sec.
6. Berry, Michael J. A., and Gordon Linoff (1997):Data Mining Techniques for Marketing, Sales and Customer Support. John Wiely & Sons Inc.
7. Brin, S., R. Motwai, J.D. Ullman, and S. Tsurr (1997), “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” 1997 ACM SIGMOD Conference on Management of Data, pp. 265-276.
8. Chen, M. S, J. Han, and P. S. Yu (1996), "Data Mining:An Overview from a Database Perspective," IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 866-883.
9. Cheung, David W., Vincent T. Ng, Ada W. Fu, etc (1996), “Efficient Mining of Association Rules in Distributed Database”, IEEE Trans. On Knowledge and Data Engineering, Vol 6, No 8. pp. 911-922.
10. Chiang, Jaw-Ching and Lin, Shi-Jen “Identifying Interesting Patterns in a Medical Database System---Fixed Amount Payment’s Order Items”, Journal of Information Management, (Be Accepted)
11. Delesie, L., and L. Croes (2000), “Operations Research and Knowledge Discovery: a Data Mining Method Applied to Health Care Management”, Intl. Trans. In Operational Research 7(2000), pp 159-170.
12. Demond, A.M., and Concord (1997), “Data Mining for Hidden Groups in Hospital Popullations,” SUGI 22, San Diego, California, March 1997, pp16-19.
13. Denwattana, Nuansri, and Janusz R. Getta (2001), “A Parameterised Algorithm for Mining Association Rules”, IEEE, pp. 45-51.
14. Frawley, W. J., G. Patitetsky-Shapiro and C. J. Matheus (1991), “Data Base Mining Discovering in Database: An Overview,” Knowledge Discovery in Database,California,AAAI/MIT Press pp.1-30.
15. Fayyard, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996), “Knowledge Discovery and Data Mining: Towards a Unifying Framework,” KDD-96, Portland, Oregon, August 2-4, CA, pp.82-88.
16. Glymour, Clark, David Madigan, Darry Pregibon and Padhraic Smyth (1996), “Statistical Inference and Data Mining”, Communications of the ACM, Vol. 39.
17. Goh, Kheng Guan, Wynne Hsu, Mong Li Lee(2001), “ADRIS: Automatic Diabetic Retinal Image Screening System”, Medical Data mining and knowledge Discovery, chapter 7, pp181-209, Physica-Verlag
18. Greene, Marvin V.(1999), “Medicine Starting to see value in data”, American Medical News, Chicago, Vol 42. no. 3, pp 26-27, Jan 18.
19. Grupe, F. H., and M. M. Owrang (1995), “Data Base Mining Discovering New Knowledge and Coperative Advantage,”,Information Systems Management,Vol.12,No.4,Fall 1995, pp.26-31.
20. Han, Jiawei, Yandong Cai and Nick Cercone (1993), “Data-Driven Discovery of Quantitative Rules in Relational Database,” IEEE Transaction on Knowledge and Data Engineering, Vol. 5, Feb. 1993, pp29-40.
21. Han, Jiawei, and M. Kamber. (2001):Data Mining: Concepts and Techniques. Morgan Kaufmann.
22. Han, Jiawei, JianPei and Yiwen Yin (2000), “Mining frequent patterns without candidate generation”. Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, Pages 1 - 12
23. HIC (2000), http://www.hic.gov.au/
24. Hsu, Wynne, Mong Li Lee, Bing Liu and Tok Wang Ling (2000), “Exploration Mining in Diabetic Patients Database: Finding and Conclusions”
25. IBM (1999): Using the Association Visualizer. IBM Version 6 Release.
26. IBM (1999): Using Intelligent Miner for Data. IBM, Version 6 Release 1, 1999
27. IBM (2000), http://www9.s390.ibm.com/customer/
28. IBM (2000), http://www.software.ibm.com/data/
29. Klemettinen, Mika, Heikki Mannnila, etc. (1994), “Finding Interesting Rules from Large Sets of Discovered Association Rules”, Third International Conference on Information and Knowledge Management, pp. 401-407, Nov29-Dec2.
30. Kohonen, T. (1990), “The Self-Organizing Map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1480, Sep.
31. Lapuerta, p., SP Azen, and L. LaBree (1995), “Use of of a neural network in predicting the risk of coronary artery disease,” Computer Biomed. Res. 1995;28, pp38-52.
32. Last, Mark, Oded Maimon and Abraham Kandel (2001), “Knowledge Discovery in Mortality Records: An Info-Fuzzy Approach”, Medical Data mining and knowledge Discovery, chapter 8, pp211-235, Physica-Verlag
33. Lavrač, Nada (1999), “Selected Techniques for Data Mining in Medicine”, Artificial Intelligence in Medicine 16(1999), pp 3-23.
34. Nuansri Denwattana, Janusz R. Getta (2001), “A Parameterised Algorithm for Mining Association Rules”, IEEE, pp. 45-51.
35. Lee, C.-C., and J. P. de Gyvez(1996), “Color Image Processing in a Cellular Neural-Network Environment,” IEEE Trans. on Neural Networks, vol. 7, no. 5, pp. 1086-1098, Sep.
36. Lemnt, Brian, Arun Swami, Jennifer Widom (1997), “Clustering Association Rules”, In Proceedings of the Thirteenth International Conference on Data Engineering, April 7-11.
37. Lewin, David I. (2000), “Getting Clinical About Neural Networks”, IEEE Intelligence Systems, Jan/Feb 2000, pp 2-3.
38. Lippmann, R. P. (1987), “An Introduction to Computing with Neual Nets,” IEEE ASSP Magazine, pp. 4-22, Apr.
39. Mehta, Manish, Rakesh Agrawal and Jorma Rissanen (1993), “SLIQ: A Fast Scalable Classifier for Data Mining.”.
40. Michael Lloyd-Williams (1998), “Case Studies in the Data Mining Approach to Health Information Analysis”, IEE UK
41. Milley, Anne (2000), “Healthcare and Mining”, Health Management Technology, Altanta, Aug.
42. Ng, Raymond and Jiawei Han (1994), “Efficient and Effective Clustering Methods for Spatial Data Mining,” Proceedings of the 20th VLDB Conference, Santiago, Chile, pp144-155.
43. Ordonez, Carlos, Cesar A. Santana, and Levien de Braal (2000), “Discovery Interesting Association Rules in Medical Data”, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
44. Park, Jong Soo, Ming-Syan Chen and Philip S. Yu (1995), “Using a Hash-Based Method with Transaction Trimming and Database Scan Reduction for Mining Association Rules,” IEEE Transaction on Knowledge and Data Engineering.
45. Quinlan, J. R. (1986), “Induction of Decision Trees, ” Machine Learning, ” Vol. 1, No. 1.
46. Quinlan, J.R. (1979), “Discovering Rules by Induction from Large Collection of Examples”, in Michie, D. 1979, (editor), “Expert Systems in Micro-Electronic Age”, Edinburgh University Press, Edinburgh, UK, 168-201.
47. Rothermel, Kurt (1997), “Extended Concepts for Association Rule Discovery”.
48. Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986), “Learning Internal Representation by Error Propagation,” in D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, vol. I, Cambridge, Massachusetts: The MIT Press.
49. Sarace, Mohammad,George Koundourakis,Babis Theodoulidis, “Easyminer: Data Mining in Medical Database”, IEE, UK
50. Savasere, A., E. Omiecinski, and S. Navathe (1995), “An Efficient Algorithm for Mining Association Rules in Large Databases,” Proc. Int’l Conf. Very Large Data Bases, pp. 432-444, Zurich, Switzerland, Sept.
51. Shahabi, Cyrus, Farnoush Banaei-Kashani, etc. (2000), "Feature Matrices: A Model for Efficient and Anonymous Mining of Web Nevigations".
52. Shalvi, Doron and Nicholas DeClaris (1998), “Unsupervised Neural network approach to Medical Data Mining Techniques”, IEEE, pp171-176
53. Silberschatz, Avi., and Alexander Tuzhilin(1996), "What Makes Patterns Interesting in Knowledge Discovery System," IEEE Trans. On Knowledge and Data Engineering, vol. 8, no. 6, pp. 970-974.
54. Thuraisingham, B. (2000), “A primer for understanding and applying data mining,” IT Professional, vol. 2, no. 1, pp. 28-31.
55. Tu, JV, and MRJ. Guerriere (1993), “Use of a neural network as a predictive instrument for lrngth of stay in the intensive care unit following cardic surgery,” Computer Biomed. Res. 1993; 26, pp220-226:
56. Tsumoto, Shusaku (2000), “Knowledge discovery in clinical database and evaluation of discovered knowledge in outpatient clinic,” INFORMATION SCIENCE, pp.125-137.
57. Wang, W., and R. Yang, Muntz (1997), “STING: A Statistical Information grid Approach to Spatial Data Mining,” VLDB’97.
58. Witten, I. H., and E. Frank (2000), Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Francisco, CA.
59. Wong, Man Leung, Wai Lam, Kwong Sak Leung, and Jack C. Y. Cheng (1999), “Applying Evolutionary Algorithms to Discovery Knowledge from Medical Database”, IEEE, pp 936-941.
60. Zaki, Mohammed J.(2000), “Scablable Algorithm for Association Mining”, IEEE Trans. On Knowledge and Data Engineering, Vol 12, No 3. pp. 372-390.
61. Zhang, Tian, Raghu Ramakrishnan, and Miron Livny (1996), “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” SIGMOD . 1996, pp. 103-114.
指導教授 林熙禎(Shi-Jen Lin) 審核日期 2005-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明