參考文獻 |
中文部分
1. 王復中(2000):健保醫療費用審查自動化之研究。國立政治大學資訊管理研究所碩士論文。
2. 江士彥(2001):醫療顧客關係管理之顧客需求與滿意度分群分析-以國內某準醫學中心為例。元智大學資訊管理學系碩士論文。
3. 行政院衛生署(2002):中華民國公共衛生年報。行政院。
4. 李淑芬(2001):臨床路徑之建立機制-應用資料採礦技術。東海大學工業工程學系碩士論文。
5. 吳恆睿(1998):中醫院揀藥儲位規劃之研究。逢甲大學工業工程學系碩士論文。
6. 吳宗藩與謝清佳(1998):資訊管理理論與實務。智勝,台北。
7. 吳國禎(1999):資料探索在醫學資料庫之應用。中原大學醫學工程學系碩士論文。
8. 卓文福(1999):應用資料採礦於基因體之重複序列資料庫。國立中央大學資訊工程研究所碩士論文。
9. 林信忠(1999):資料挖掘技術應用於健保醫療費用稽核之研究。私立元智大學管理研究所碩士論文。
10. 周宣光與王復中(2000),「全民健保醫療費用審查自動化研究」,第十一屆全國資訊管理學術研討會,高雄中山大學。
11. 周賢昭(1998):以資料礦探採技術發展臨床路徑之研究。國立中山大學資訊管理學系碩士論文。
12. 邱俊德(1998):應用自組織映射圖於影像壓縮。私立大葉大學電機工程研究所碩士論文。
13. 張佳祺(1998):論病例計酬支付制度對骨科住院醫療利用情形之影響分析。國立陽明大學衛生福利研究所碩士論文。
14. 張錦文、譚開元、黃佳經(1993):醫院管理。水牛出版社,台北。
15. 莊利瑩(2000):資料挖掘機制在臨床路徑之應用。私立東海大學工業工程系碩士論文
16. 梁水金(2001):建立一個Web-based資料挖掘系統提供藥物交互作用資訊查詢。逢甲大學資訊工程學系碩士論文。
17. 健保局(2000),http://www.nhi.gov.tw。
18. 陳世源(1999):資料採礦技術在病例與藥品關連性之研究。國立中山大學資訊管理學系研究所碩士論文。
19. 陳冠華(2001):藉由顧客關係管理方法提升門診病患的醫療服務品質~以某區域醫院高齡慢性病患為例。雲林科技大學工業工程與管理研究所碩士班論文。
20. 陳怡秀(1996):自然生產論病例計酬制對醫療資源耗用之影響-以三家醫學中心為例。國立台灣大學公共衛生學系碩士論文。
21. 陳偉宏(2001):論病例計酬支付制度對醫院財務績效與經營績效關聯性之研究。國立政治大學會計學系碩士論文。
22. 陳清坤(2002):構造以中醫論病情分析決策系統。私立南華大學資訊管理學系碩士班碩士論文。
23. 陳稼興(1999):人工智慧講義。中央資訊管理系。
24. 連麗華(2001):合理門診量與藥價基準之因應─知識發現與行為回饋系統。台北醫學院醫學資訊研究所碩士論文。
25. 郭文嘉(2000):影像搜尋及超音波乳癌診斷之研究。國立中正大學資訊工程研究所博士論文。
26. 郭振宗(1999):微生物類別診斷與抗生素用藥決策支援系統。屏東科技大學資訊管理系碩士論文。
27. 黃仁貴(2001):以叢集分析技術探討病患就診屬性與看診時間之關係。台北醫學院醫學資訊研究所碩士論文。
28. 黃昱瞳(2000):全民建保實施牙醫總額預算制度對於醫療資源分布的影響評估。國立台北護理學院醫護管理研究所碩士論文。
29. 葉怡成(2000):類神經網路模式應用與實作。儒林圖書有限公司,台北。
30. 楊培銘(1988):慢性B型肝炎之免疫學研究。台灣大學臨床醫學研究所博士論文。
31. 廖珮茹(2001):論病例計酬制實施下風險分攤管理對醫療資源耗用影響之研究。私立學長庚大學管理學研究所碩士論文。
32. 廖翊舒(2000):牙科總額制度對醫療價量之影響。國立陽明大學醫務管理研究所碩士論文。
33. 廖雅郁(2001):應用資料探採於我國西藥行銷之研究。國立交通大學經營管理研究所碩士論文。
34. 劉慧心(1999):牙醫師對推動牙醫總額支付制度過程公會運作之態度研究。國立陽明大學衛生福利研究所碩士論文。
35. 蔣肇慶與林熙禎(1999),「資料開採在醫療資訊的探討」,第10屆國際資訊管理學術研討會,頁135~142。
36. 蔣肇慶與林熙禎(1999),「資料開採在醫療資訊的研究」,醫療資訊雜誌,第九期,頁71~92
37. 蔣肇慶與林熙禎(2002),「論病例計酬下醫令執行項目內容之合理性研究-APORES模式」,醫療資訊雜誌,第十四期,頁01~16。
38. 蔡清元(1998):自走型機器人視覺導引抓取任務之研究。國立成功大學機悈工程研究所碩士論文。
39. 戴桂英(1998),「論病例計酬支付制度之現況與未來發展」,中華民國醫院協會八十七年會員大會學術活動講義,p100~p113。
40. 蕭秀如(1999):牙科總額支付制度試辦計劃效果之初探-以中央健康保險局台北分局轄區範圍內之牙科醫療院所為例。國立陽明大學醫務管理研究所碩士論文。
41. 藍中賢與詹前隆(2000),「結合模糊及合理論與貝氏分類法之資料探勘技術」,第十一屆全國資訊管理學術研討會,高雄中山大學
42. 韓欽銓與黃崇勝(2001),「資料探勘技術應用於輔助病患看診指引之研究」,第七屆資訊管理研究暨實務研討會,台北。
43. 韓揆(2001),「土、洋DRGs—全民建保論病例計酬如何為繼 」 ,醫務管理期刊,第二卷第三期,pp27~45。
44. 蘇友珊(1998):全民建保論病例計酬之處方型態-以自然生產與剖腹生產為例。國立陽明大學衛生福利研究所碩士論文。
英文部分
1. Abston, Karen Crowley, T. Allan Pryor, & Peter J, Hang (1997), “Inducing Practice Guidelines from a Hospital Database,” The Jouranal of the American Medical Informatics Association, JAMIA
2. Agrawal, Rakesh, Ashish Gupta and Sunita Sarawagi (2000), “Modeling Multidimensional Databases,” http://www.almaden.ibm.com/.
3. Agrawal, Rakesh, J. Gehrke, D. Gunopulos, and P. Raghavan (1998), “Automatic subspace clustering of high dimensional data for data mining applications”, SIGMOD'98.
4. Agrawal, Rakesh, and Ramakrishnan Srikant (1994), “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th VLDB Conference, Santiago, Chile.
5. Agrawal, Rakesh, Tomasz Imielinski, and Arun Swami (1993), “Database Mining: A Performance Perspective,” IEEE Trans. On Knowledge and Data Engineering, vol. 5, no. 6, pp. 914-925, Sec.
6. Berry, Michael J. A., and Gordon Linoff (1997):Data Mining Techniques for Marketing, Sales and Customer Support. John Wiely & Sons Inc.
7. Brin, S., R. Motwai, J.D. Ullman, and S. Tsurr (1997), “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” 1997 ACM SIGMOD Conference on Management of Data, pp. 265-276.
8. Chen, M. S, J. Han, and P. S. Yu (1996), "Data Mining:An Overview from a Database Perspective," IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 866-883.
9. Cheung, David W., Vincent T. Ng, Ada W. Fu, etc (1996), “Efficient Mining of Association Rules in Distributed Database”, IEEE Trans. On Knowledge and Data Engineering, Vol 6, No 8. pp. 911-922.
10. Chiang, Jaw-Ching and Lin, Shi-Jen “Identifying Interesting Patterns in a Medical Database System---Fixed Amount Payment’s Order Items”, Journal of Information Management, (Be Accepted)
11. Delesie, L., and L. Croes (2000), “Operations Research and Knowledge Discovery: a Data Mining Method Applied to Health Care Management”, Intl. Trans. In Operational Research 7(2000), pp 159-170.
12. Demond, A.M., and Concord (1997), “Data Mining for Hidden Groups in Hospital Popullations,” SUGI 22, San Diego, California, March 1997, pp16-19.
13. Denwattana, Nuansri, and Janusz R. Getta (2001), “A Parameterised Algorithm for Mining Association Rules”, IEEE, pp. 45-51.
14. Frawley, W. J., G. Patitetsky-Shapiro and C. J. Matheus (1991), “Data Base Mining Discovering in Database: An Overview,” Knowledge Discovery in Database,California,AAAI/MIT Press pp.1-30.
15. Fayyard, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996), “Knowledge Discovery and Data Mining: Towards a Unifying Framework,” KDD-96, Portland, Oregon, August 2-4, CA, pp.82-88.
16. Glymour, Clark, David Madigan, Darry Pregibon and Padhraic Smyth (1996), “Statistical Inference and Data Mining”, Communications of the ACM, Vol. 39.
17. Goh, Kheng Guan, Wynne Hsu, Mong Li Lee(2001), “ADRIS: Automatic Diabetic Retinal Image Screening System”, Medical Data mining and knowledge Discovery, chapter 7, pp181-209, Physica-Verlag
18. Greene, Marvin V.(1999), “Medicine Starting to see value in data”, American Medical News, Chicago, Vol 42. no. 3, pp 26-27, Jan 18.
19. Grupe, F. H., and M. M. Owrang (1995), “Data Base Mining Discovering New Knowledge and Coperative Advantage,”,Information Systems Management,Vol.12,No.4,Fall 1995, pp.26-31.
20. Han, Jiawei, Yandong Cai and Nick Cercone (1993), “Data-Driven Discovery of Quantitative Rules in Relational Database,” IEEE Transaction on Knowledge and Data Engineering, Vol. 5, Feb. 1993, pp29-40.
21. Han, Jiawei, and M. Kamber. (2001):Data Mining: Concepts and Techniques. Morgan Kaufmann.
22. Han, Jiawei, JianPei and Yiwen Yin (2000), “Mining frequent patterns without candidate generation”. Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, Pages 1 - 12
23. HIC (2000), http://www.hic.gov.au/
24. Hsu, Wynne, Mong Li Lee, Bing Liu and Tok Wang Ling (2000), “Exploration Mining in Diabetic Patients Database: Finding and Conclusions”
25. IBM (1999): Using the Association Visualizer. IBM Version 6 Release.
26. IBM (1999): Using Intelligent Miner for Data. IBM, Version 6 Release 1, 1999
27. IBM (2000), http://www9.s390.ibm.com/customer/
28. IBM (2000), http://www.software.ibm.com/data/
29. Klemettinen, Mika, Heikki Mannnila, etc. (1994), “Finding Interesting Rules from Large Sets of Discovered Association Rules”, Third International Conference on Information and Knowledge Management, pp. 401-407, Nov29-Dec2.
30. Kohonen, T. (1990), “The Self-Organizing Map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1480, Sep.
31. Lapuerta, p., SP Azen, and L. LaBree (1995), “Use of of a neural network in predicting the risk of coronary artery disease,” Computer Biomed. Res. 1995;28, pp38-52.
32. Last, Mark, Oded Maimon and Abraham Kandel (2001), “Knowledge Discovery in Mortality Records: An Info-Fuzzy Approach”, Medical Data mining and knowledge Discovery, chapter 8, pp211-235, Physica-Verlag
33. Lavrač, Nada (1999), “Selected Techniques for Data Mining in Medicine”, Artificial Intelligence in Medicine 16(1999), pp 3-23.
34. Nuansri Denwattana, Janusz R. Getta (2001), “A Parameterised Algorithm for Mining Association Rules”, IEEE, pp. 45-51.
35. Lee, C.-C., and J. P. de Gyvez(1996), “Color Image Processing in a Cellular Neural-Network Environment,” IEEE Trans. on Neural Networks, vol. 7, no. 5, pp. 1086-1098, Sep.
36. Lemnt, Brian, Arun Swami, Jennifer Widom (1997), “Clustering Association Rules”, In Proceedings of the Thirteenth International Conference on Data Engineering, April 7-11.
37. Lewin, David I. (2000), “Getting Clinical About Neural Networks”, IEEE Intelligence Systems, Jan/Feb 2000, pp 2-3.
38. Lippmann, R. P. (1987), “An Introduction to Computing with Neual Nets,” IEEE ASSP Magazine, pp. 4-22, Apr.
39. Mehta, Manish, Rakesh Agrawal and Jorma Rissanen (1993), “SLIQ: A Fast Scalable Classifier for Data Mining.”.
40. Michael Lloyd-Williams (1998), “Case Studies in the Data Mining Approach to Health Information Analysis”, IEE UK
41. Milley, Anne (2000), “Healthcare and Mining”, Health Management Technology, Altanta, Aug.
42. Ng, Raymond and Jiawei Han (1994), “Efficient and Effective Clustering Methods for Spatial Data Mining,” Proceedings of the 20th VLDB Conference, Santiago, Chile, pp144-155.
43. Ordonez, Carlos, Cesar A. Santana, and Levien de Braal (2000), “Discovery Interesting Association Rules in Medical Data”, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
44. Park, Jong Soo, Ming-Syan Chen and Philip S. Yu (1995), “Using a Hash-Based Method with Transaction Trimming and Database Scan Reduction for Mining Association Rules,” IEEE Transaction on Knowledge and Data Engineering.
45. Quinlan, J. R. (1986), “Induction of Decision Trees, ” Machine Learning, ” Vol. 1, No. 1.
46. Quinlan, J.R. (1979), “Discovering Rules by Induction from Large Collection of Examples”, in Michie, D. 1979, (editor), “Expert Systems in Micro-Electronic Age”, Edinburgh University Press, Edinburgh, UK, 168-201.
47. Rothermel, Kurt (1997), “Extended Concepts for Association Rule Discovery”.
48. Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986), “Learning Internal Representation by Error Propagation,” in D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, vol. I, Cambridge, Massachusetts: The MIT Press.
49. Sarace, Mohammad,George Koundourakis,Babis Theodoulidis, “Easyminer: Data Mining in Medical Database”, IEE, UK
50. Savasere, A., E. Omiecinski, and S. Navathe (1995), “An Efficient Algorithm for Mining Association Rules in Large Databases,” Proc. Int’l Conf. Very Large Data Bases, pp. 432-444, Zurich, Switzerland, Sept.
51. Shahabi, Cyrus, Farnoush Banaei-Kashani, etc. (2000), "Feature Matrices: A Model for Efficient and Anonymous Mining of Web Nevigations".
52. Shalvi, Doron and Nicholas DeClaris (1998), “Unsupervised Neural network approach to Medical Data Mining Techniques”, IEEE, pp171-176
53. Silberschatz, Avi., and Alexander Tuzhilin(1996), "What Makes Patterns Interesting in Knowledge Discovery System," IEEE Trans. On Knowledge and Data Engineering, vol. 8, no. 6, pp. 970-974.
54. Thuraisingham, B. (2000), “A primer for understanding and applying data mining,” IT Professional, vol. 2, no. 1, pp. 28-31.
55. Tu, JV, and MRJ. Guerriere (1993), “Use of a neural network as a predictive instrument for lrngth of stay in the intensive care unit following cardic surgery,” Computer Biomed. Res. 1993; 26, pp220-226:
56. Tsumoto, Shusaku (2000), “Knowledge discovery in clinical database and evaluation of discovered knowledge in outpatient clinic,” INFORMATION SCIENCE, pp.125-137.
57. Wang, W., and R. Yang, Muntz (1997), “STING: A Statistical Information grid Approach to Spatial Data Mining,” VLDB’97.
58. Witten, I. H., and E. Frank (2000), Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Francisco, CA.
59. Wong, Man Leung, Wai Lam, Kwong Sak Leung, and Jack C. Y. Cheng (1999), “Applying Evolutionary Algorithms to Discovery Knowledge from Medical Database”, IEEE, pp 936-941.
60. Zaki, Mohammed J.(2000), “Scablable Algorithm for Association Mining”, IEEE Trans. On Knowledge and Data Engineering, Vol 12, No 3. pp. 372-390.
61. Zhang, Tian, Raghu Ramakrishnan, and Miron Livny (1996), “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” SIGMOD . 1996, pp. 103-114. |