博碩士論文 953202066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.19.255.50
姓名 張宏宇(Hung-Yu Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 模糊分類法應用於衛星影像之對比增揚
(A Fuzzy-based Contrast Enhancement Method for Satellite Imagery)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般用於衛星影像的對比增揚方法皆直接使用整張影像的統計資訊對所有灰階值進行增揚處理。但由於原影像中較暗與較亮的區域增揚後常會過度飽和造成對比及細節資訊流失,所以許多不同的地物特徵常難以同時增顯出來。本研究提出一種以模糊理論為基礎的影像對比增揚方法,將單一像元視為數種類別的組合,以混合的程度表示像元內類別間之對應關係,藉以補償上述傳統方法中黑暗區與明亮區損失的對比及資訊。本演算法分為三個階段:第一階段,以Fuzzy c-Means (FCM)群聚分類法對衛星影像作模糊式分類,將原始影像由灰階值空間轉換至歸屬值空間,分類後的各個像元由數個相應於類別比例的歸屬值所組成。第二階段,依照各類別的歸屬值,分別建立各類別的增揚轉換模型。第三階段,將歸屬值依照前一階段中建立的轉換模型轉換回灰階值空間。由於每個像元皆由數個類別的歸屬值組成,原始灰階值會依照各類別的轉換模型被增揚成數個不同的值。因歸屬值代表類別混合的比例,故以各類別歸屬值作為權重,重新組合此些不同的灰階值,得到最後的增揚成果。影像經增揚後,評估採用定性及定量方式,分別以人眼及量化指標判定增揚影像含有的資訊量及對比度,並將模糊分類式增揚法的成果與傳統常用的非線性直方圖等化及線性對比擴展法的成果比較。成果顯示本研究提出的模糊分類式對比增揚演算法可以提供對人眼而言較佳的影像品質,且表現比傳統方法更佳。
摘要(英) Many image enhancement algorithms have been developed to improve the appearance of images. However, it is usually difficult to enhance all land cover classes appearing in the satellite images, because local contrast information and details may be lost in the dark and bright areas. In this study, a fuzzy-based image enhancement method is developed to partition the image pixel values into various degrees of associates in order to compensate the local brightness lost in the dark and bright areas. The algorithm contains three stages: First, the satellite image is transformed from gray-level space to membership space by Fuzzy c-Means clustering. Second, appropriate stretch model of each cluster is constructed based on corresponding memberships. Third, the image is transformed back to the gray-level space by merging stretched gray values of each cluster. Various remotely sensed images are used to test the proposed algorithm. There are various land cover classes appearing on the images, including forests, urban areas, river, farm, and so on. Since the gray values of some classes are extremely dark or bright, apparently the global enhancement will result in poor contrast quality. After using the proposed enhancement method, the results are evaluated and compared with other conventional methods. The test results indicate that the proposed method could provide a superior appearance and visualization than conventional enhancement methods.
關鍵字(中) ★ 衛星影像
★ 對比增揚
★ 模糊集合理論
★ 模糊c平均
關鍵字(英) ★ satellite imagery
★ contrast enhancement
★ fuzzy set theory
★ fuzzy c-means
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究動機及目的 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 影像增揚 3
2.1.1 空間域法 3
2.1.2 頻率域法 5
2.1.3 直方圖調整法 9
2.2 影像增揚成果評估 12
2.2.1 人為評估 12
2.2.2 量化評估 12
2.2.2.1 Shannon熵(Entropy) 13
2.2.2.2 Michelson對比度指標(Contrast Index) 13
2.2.2.3 峰值訊號雜訊比(Peak Signal to Noise Ratio, PSNR) 14
2.3 小結 15
第三章 研究方法 17
3.1 模糊集合理論(Fuzzy Set Theory) 21
3.2 模糊分類式對比增揚 22
3.2.1 模糊化(Fuzzification)-Fuzzy c-Means群聚分類法 23
3.2.2 建立類別增揚模型 29
3.2.3 去模糊化(Defuzzification) 33
3.3 增揚成果評估方法 35
3.3.1 定性評估方法 36
3.3.2 定量評估方法 36
第四章 測試資料 39
4.1 FORMOSAT-2 衛星影像 40
4.2 SPOT 5衛星影像 45
4.3 QuickBird衛星影像 49
第五章 測試成果與討論 52
5.1 實驗參數選用測試 52
5.1.1 模糊化參數測試 52
5.1.2 類別增揚模型參數測試 57
5.2 成果與討論 63
第六章 結論與建議 110
6.1 結論 110
6.2 建議 112
參考文獻 114
參考文獻 李志明,2001,「影像最佳類別數目之研究」,碩士論文,國立中央大學土木工程研究所。
Aghagolzadeh, S. and Ersoy, O. K., 1992. Transform image enhancement. Optical Engineering, 31(3), pp. 614-626.
Ahmed, N., Natarajan, T., and Rao, K. R., 1974. Discrete cosine transform. IEEE Transactions on Computers, 23(1), pp. 90-93.
Bezdek, J. C., 1981. Pattern recognition with fuzzy objective function algorithm. New York: Plenum Press.
Dunn, J. C.,1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), pp. 32-57.
Gonzalez, R. C. and Woods, R. E., 2001. Digital image processing (2nd ed.). New York: Prentice Hall.
Huang, C. M. and Harris, R. W., 1993. A comparison of several vector quantization codebook generation approaches. IEEE Transactions on Image Processing, 2(1), pp. 108-112.
Kim, Y. T., 1997. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), pp. 1-8.
Kover, V., 2006. Robust and efficient algorithm of image enhancement. IEEE Transactions on Consumer Electronics, 52(2), pp. 655-659.
Lee, J. S., 1980. Digital image enhancement and noise filtering by use the local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, pp. 165-168.
Lee, Y. H. and Park, S. Y., 1990. A study of convex/concave edges and edge-enhancing operators based on the Laplacian. IEEE Transactions on Circuits and Systems, 37(7), pp. 940-946.
Pal, N. R. and Bezdek, J. C., 1995. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, 3(3), pp. 370-379.
Peli, E., 1990. Contrast in complex images. Journal of the Optical Society of America A, 7(10), pp. 2032-2040.
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B. T. H., and Zimmerman, J. B., 1987. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), pp. 355-368.
Polesel, A., Ramponi, G. and Mathews, V. J., 2000. Image enhancement via adaptive unsharp masking. IEEE Transactions on Image Processing, 9(3), pp. 505-510.
Richards, J. A. and Jia, X., 1999. Remote sensing digital image analysis: an introduction (3rd ed.). New York: Springer.
Ross, T. J., 2004. Fuzzy logic with engineering applications. Hoboken, NJ: John Wiley.
Schowengerdt, R. A., 1997. Remote sensing models and methods for image processing (2nd ed.). San Diego, CA: Academic Press.
Shannon, E. C., 1948. A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379-423, 623-656.
Sheikh, H. R. and Bovik, A. C., 2006. Image information and visual quality. IEEE Transactions on Image Processing, 15(2), pp.430-444.
Stark, J. A., 2000. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5), pp. 889-896.
Tang, J., Peli, E. and Acton, S., 2003. Image enhancement using a contrast measure in the compressed domain. IEEE Signal Processing Letters, 10(10), pp. 289-292.
Wang, Y. and Ruan, Q., 2006. An improved unsharp masking method for palmprint image enhancement. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2, pp. 669-672.
Wongsritong, K., Kittayaruasiriwat, K., Cheevasuvit, F., Dejhan, K., and Somboonkaew, A., 1998. Contrast enhancement using multipeak histogram equalization with brightness preserving. IEEE Asia-Pacific Conference on Circuits and Systems, pp. 455-458.
Zadeh, L. A., 1965. Fuzzy sets. Information and Control, 8, pp. 338-353.
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明