![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:25 、訪客IP:3.149.235.7
姓名 陳毅(Yi Chen) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 不同圍壓下不等向壓密飽和夯實土壤之動態變形行為
(Effect of Confining Pressure on Dynamic Deformation Behavior of Saturated Compacted Soils under Anisotropic Consolidation)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究的試驗土樣取自於湖山水庫借土區殼層SM與ML土壤。利用特製夯模製作標準夯實能量下之重模試體,並以改良飽和方法使夯實試體達飽和。由於土石壩是採用分區滾壓夯實構築而成,壩體內部的靜態應力除了水平與垂直應力外,尚包含初始剪應力,故需考慮非等向壓密狀態,本研究控制有效圍壓於0.5及2.0kg/cm2,施作等向壓密Kc( )=1.0與非等向壓密應力比Kc=1.5和Kc=2.0狀態下三種夯實土壤之動力三軸試驗,探討夯實土壤於不同有效圍壓及壓密應力比的動態強度、孔隙水壓及變形之特性。
試驗結果顯示夯實土壤不會發生初始液化之現象,在等向壓密與非等向壓密下,相近反覆應力下所激發之極限殘餘孔隙水壓隨有效圍壓增加而降低;壓密應力比越大受反覆荷載作用下所激發之超額孔隙水壓量小,而極限孔隙水壓比隨著壓密應力比增加而下降。由應力路徑可觀察夯實土壤反覆受剪後,有顯著的剪脹性,動態變形量也會隨作用週數趨於穩定,故可推測夯實土壤於震後僅會發生有限的變形。殼層SM土壤在壓密應力比Kc=1.0及1.5時,動態剪應力比隨著圍壓增加並未有降低現象,而在Kc=2.0即可看出動態剪應力比隨圍壓增加而降低;殼層ML土壤其動態剪應力比隨圍壓增加而降低。並將試驗結果整理成不同有效圍壓及壓密應力比下反覆剪應力與剪應變之關係及再壓密體積應變與剪應變關係曲線,可用於估算土石壩受震所產生之永久變形與沉陷,供工程界參考。
摘要(英) The study is to investigate dynamic strength of saturated compacted soils. Dynamic strength of saturated compacted soils is very important parameters in analyzing seismic responses of earth dam materials. This paper performed a series of stress-controlled dynamic triaxial tests on two kinds of compacted soils, SM and ML for constructing an earth dam. This paper proposed a vacuum method for improving the saturation of compacted soils. Test results indicate the methods make the Skempton’s coefficient B of all specimens greater than 0.95. Compacted soils of the earth dam have different initial shear stress conditions which range from Kc=1.5 to Kc=2.0. The ultimate pore water pressure decreased when the effective confining pressure increased in all kinds of soils. As the effective confining pressure increased, the cyclic shear stress ratio of compacted SM soils is almost constant for anisotropically consolidated Kc=1.0 and 1.5 conditions. However, the cyclic shear stress ratio decreased in the conditions of compacted SM soils in anisotropically consolidated Kc=2.0 and compacted ML soils. In order to evaluate the post earthquake settlement, the drained values are opened after cyclic loading completed and excess pore water pressure dissipate with time induce volumetric strain. The consolidated stress ratio increased, the post volumetric strain decreased.
關鍵字(中) ★ 土石壩
★ 動力三軸試驗
★ 動態強度
★ 有效圍壓關鍵字(英) ★ Earth dam
★ Dynamic triaxial test
★ Dynamic strength
★ Compacted soils
★ Confining pressure論文目次 摘要 .................................................I
Abstract ............................................II
誌 謝 .............................................III
目錄 .................................................V
圖目錄 .............................................VII
表目錄 .............................................XII
符號說明 ..........................................XIII
第一章 緒論 ..........................................1
1.1 前言 .............................................1
1.2 研究目的 .........................................2
1.3 研究方法 .........................................2
1.4 論文架構 .........................................2
第二章 文獻回顧 ......................................3
2.1 以動力三軸試驗模擬有初始剪應力下之動態荷載 .......3
2.2 土壤受循環荷載作用下之超額孔隙水壓激發 ...........5
2.3 細粒料含量對土壤動態強度之影響 ...................9
2.4 初始剪應力對動態強度之影響 ......................13
2.5 有效圍壓對土壤力學行為之影響 ....................18
2.6 室內動態強度試驗與現地應力之轉換 ................24
2.7 國內土石壩室內動態強度試驗 ......................26
第三章 室內試驗 .....................................33
3.1 現地場址與試驗土樣 ..............................33
3.2 夯實土壤物理性質試驗 ............................36
3.3 夯實重模試體之製作 ..............................37
3.4 試驗儀器 ........................................46
3.5 荷重計更換 ......................................51
3.6 動態試驗步驟 ....................................52
3.7 資料處理 ........................................56
第四章 試驗結果與討論 ...............................61
4.1 重模夯實試體均勻度之探討 ........................61
4.2 動態強度試驗結果之探討 ..........................63
4.3 動態荷載作用下反覆及殘餘應變之行為 ..............74
4.4 應力路徑 ........................................83
4.5 超額孔隙水壓之激發 ..............................89
4.6 動態強度曲線 ...................................101
4.7 不同壓密應力下有效圍壓與反覆剪應力之關係 .......107
4.8 室內試驗動態強度與現地應力之轉換 ...............111
4.9 動態荷載作用後之再壓密行為 .....................116
第五章 結論與建議 ..................................119
5.1 結論 ...........................................119
5.2 建議 ...........................................121
參考文獻 ...........................................122
參考文獻 1.許曉峰,「臺北盆地基二區粉質黏土之大地工程特性」,碩士論文,國立中央大學土木工程研究所,中壢 (1992)。
2.林友勝,「不等向壓密飽和夯實土壤之動態變形行為」,碩士論文,國立中央大學土木工程研究所,中壢 (2008)。
3.宋勻文,「台北盆地北投地區基隆河黏土之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
4.陳界文,「細粒料特性對土壤抗液化強度之影響」碩士論文,國立台灣大學土木工程系研究所,台北 (2001)。
5.陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,碩士論文,國立成功大學土木工程學研究所,台南 (1999)。
6.周旭宏,「台北盆地北投地區基隆河黏土之動態強度」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
7.簡才貴,「土石壩材料之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
8.中興工程顧問社,「牡丹水庫工程—大壩動態安定分析」,台灣省水利局委託 (1994)。
9.中興工程顧問社,「牡丹水庫大壩動態分析—試驗結果報告」,台灣省水利局委託 (1992)。
10.中興工程顧問社,「白河水庫安全評估—總報告」,台灣省水利局委託 (1996)。
11.經濟部水利署中區水資源局網站。
12.Gratchev, I.B.,Sassa, K.,Osipov, V.I., and Sokolov, V.N., “The liquefaction of clayey soils under cyclic loading,” Engineering Geology, Vol. 86, pp. 70-84 (2006).
13.Konrad, J.M., and Wagg, B.T., “Undrained cyclic loading of anisotropically consolidated clayey silts,” Journal of Geotechnical Engineering, ASCE, Vol. 119, NO. 5, pp. 929-947 (1993).
14.Yasuda, N., Matsumoto, N., Yoshioka, R., and Takahashi M., “Undrained monotonic and cyclic strength of compacted rockfill material from triaxial and torsional simple shear tests,” Canadian Geotechnical Journal, Vol. 34, pp. 357-367 (1997).
15.Hyodo, M., Hyde, A.F.L., Aramaki, N., and Nakata, Y., “Undrained monotonic and cyclic shear behaviour of sand under low and high confining stresses,” Soils and Foundations, Vol. 42, NO. 3, pp. 63-76 (2002).
16.Santucci de Magistris, F., Silverstri, F., and Vinale, F., “The influence of compacted on the mechanical behaviour of a silty sand,” Soils and foundation, Vol. 38, No. 4, pp. 41-56 (1998).
17.Jafari, M.K., and Shafiee, A., “Mechancial behavior of compacted composite clays,” Canadian Geotechnical Journal, Vol. 41, pp. 1152-1167(2004).
18.Hyodo, M., Aramaki, N., and Itoh, M., “Cyclic strength and deformation of crushable carbonate sand,” Soil Dynamics and Earthquake Engineering, Vol. 15, pp. 331-336(1996).
19.Amini, F., and Qi, G.Z., “Liquefaction testing of stratified silty sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, NO. 3, pp. 208-217(2000).
20.Seed, H. B. and Clarence K. C., “Clay Strength under Earthquake Loading Condition,” ASCE, Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 53-78 (1966).
21.Ishihara, K., and Yoshimine, M., “Evaluation of settlements in sand deposits following liquefaction during earthquake,” Soils and Foundations, Vol. 32, No. 1, pp. 173-188 (1992).
22.Seed, H. B. and Clarence K. C., “Clay Strength under Earthquake Loading Condition,” ASCE, Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 53-78 (1966).
23.Xenaki, V.C., and Athanasopoulos, G.A., “Dynamic properties and liquefaction resistance of two soil materials in an earthfill dam-Laboratory test results,” Soil Dynamics and Earthquake Engineering, Vol. 28, pp. 605-620 (2008).
24.Hyodo, M., Murata, H., Yasufuku, N., and Fujii, T., “Undrained cyclic shear strength and residual shear strain of saturated sand by cyclic triaxial tests,” Soils and Foundations, Vol. 31, No. 3, pp. 60-76 (1991).
25.Hyodo, M., Hyde, A.F.L., Yamamoto, Y., and Fujii, T., “Cyclic shear strength of undisturbed and remoulded marine clays,” Soils and Foundations, Vol. 39, No. 2, pp. 45-58 (1999).
26.Lee, K.L. and Fitton, J.A., “Factors affecting the cyclic loading strength of soil,” vibration effects of earthquakes on soils and foundations, ASTM STP 450, American Society for Testing and Materials, pp.71-95 (1969).
27.Xenaki, V. C., and Athanasopoulos, G. A., “Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effectof fines,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp. 183-194 (2003).
28.Polito, C. P., and Martin, J. R., “Effect of nonplastic fines on the liquefaction resistance of sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 5, pp. 408-415 (2001).
指導教授 黃俊鴻(Jin-hung Hwang) 審核日期 2009-7-26 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare