所別:地球物理研究所碩士班一般生科目:普通物理學

- 1. (a) (10%) What is Young's modulus?
 - (b) (10%) An iron rod 4 m long and 0.5 cm² in cross section stretches 1 mm when a mass of 225 kg is hung from its lower end. Compute Young's modulus for the iron.
- 2. A spring-mass oscillator has a total energy E_0 and an amplitude x_0 .
 - (a) (10%) How large will K (kinetic energy) and U (potential energy) be for it when $x = x_0/2$?
 - (b) (10%) For what value of x will K = U?
- 3. A number of tiny spheres made of steel with density ρ_s , and having various radii r_s , are released from rest just under the surface of a tank of water, whose density is ρ .
 - (a) (10%) Show that the "net gravitational force" acting on a sphere (the combined effect of weight and buoyancy) has magnitude $(4\pi/3)r_s^3(\rho_s-\rho)g$. g is the gravitational acceleration.
 - (b) (10%) Assuming that the fluid flow around each descending sphere is laminar, find the terminal speed ν of a sphere in terms of r_s , ρ_s , ρ and the viscosity η of the water.
- 4. In a p-V diagram an adiabatic and an isothermal curve for an ideal gas intersect. Denote the intersection point by (p_0, V_0) .
 - (a) (10%) Show that the absolute value of the slope of the adiabatic is γ times that of the isotherm. γ is the specific heat ratio.
 - (b) (10%) Which curve is steeper? Why?
- 5. (a) (10%) Sketch the profile of the wave $f(x, t) = Ae^{-B(x-vt)^2}$ at t = 0 sec and t = 1 sec, using A = 1.0 m, B = 1.0 m⁻², and v = +2.0 m/s.
 - (b) (10%) Verify by partial differentiation that the wave function in (a) satisfies the one-dimensional wave equation.