國立中央大學八十五學年度碩士班研究生入學試題卷

所別:太空科學研究所 不分組 科目:應用數學

Problem 1

(3%) (a) Given the function

$$f(x, y, z; a) = [x^2 + y^2 + (z - \frac{1}{2}a)^2]^{-1/2} - [x^2 + y^2 + (z + \frac{1}{2}a)^2]^{-1/2}$$
 for the potential of a pair of oppositely-signed monopoles, find its gradient vector.

(3%) (b) Use Taylor expansion of the above function to find the potential function

$$F = \frac{a}{x^2 + y^2 + z^2}$$

for a dipole with a dipole moment a

(3%) (c) Calculate the gradient of the dipole's potential function in rectangular coordinates.

(3%) (d) Calculate the divergence of the gradient vector.

(3%) (e) Writing the dipole's potential function as

$$F = \frac{a}{r^2}$$

in spherical coordinates, calculate its gradient in spherical coordinates.

Problem 2

(10%) Find the eigenvalues and eigenvectors for the matrix $\begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$.

Problem 3

(10%) Solve the system of differential equations

$$\frac{\mathrm{d}u}{\mathrm{d}t} = v, \qquad \frac{\mathrm{d}v}{\mathrm{d}t} = 2u - v + 4$$

subject to the initial values of u equal to 1 and v equal to 0.

Problem 4

(5%) (a) Show that t^2 and $\frac{1}{t}$ are two solutions to the differential equation $t^2 \frac{d^2 u}{dt^2} - 2u = 0$.

(10%) (b) Solve the inhomogeneous differential equation $t^2 \frac{d^2u}{dt^2} - 2u = 3t^3$.

Problem 5

(10%) Solve the first-order differential equation $\frac{du}{dt} - 2u = t^2.$

$$\frac{\mathrm{d}u}{\mathrm{d}t}-2u=t^2.$$

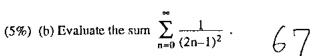
Problem 6

(10%) Solve the second-order differential equation

$$\frac{d^2u}{dt^2} - \frac{du}{dt} - 2u = 3e^{-t} + 10\sin t - 4t.$$

Problem 7

(5%) (a) Write down the Euler formula and prove it by infinite series.


(10%) (b) Evaluate the sum

$$\sum_{n=0}^{\infty} \frac{1}{2^n} \cos nx .$$

Problem 8

(10%) (a) Calculate the Fourier series for the function with period 2π

$$f(x) = \begin{cases} -\frac{\pi}{4}, & -\pi < x < 0 \\ \\ \frac{\pi}{4}, & 0 < x < \pi \end{cases}$$

