所別:<u>光電科學與工程學系碩士班 一般生</u> 科目:<u>電子學 共 十 頁 第 1 頁</u> *請在試卷答案卷(卡)內作答

- 1. At room temperature $V_T = 0.026 \text{ V}$, consider the circuit shown in Fig. 1.
 - (a) (5%) Determine the diode current I_D and diode voltage V_D for $V_{\gamma} = 0.6$ V.
 - (b) (5%) Define a load line of this circuit.
 - (c) (5%) Determine the diode small-signal incremental resistance $r_{\rm d}$.

- 2. At room temperature $V_T = 0.026$ V, consider the circuit shown in Fig. 2. The parameters are $\beta = 150$, $V_{BE}(on) = 0.7$ V, $V_A = \infty$, $C_\pi = 10$ pF, and $C_\mu = 1$ pF.
 - (a) (5%) Find the working point of transistor.
 - (b) (5%) Find the input resistance R_i .
 - (c) (5%) Determine the upper 3 dB frequencies corresponding to the input and output portions of the equivalent circuit.
 - (d) (5%) Calculate the small-signal midband voltage gain.

Fig. 2

所別:<u>光電科學與工程學系碩士班 一般生</u> 科目:<u>電子學 共 4 頁 第 2 頁</u> *請在試卷答案卷(卡)內作答

- 3. The transistor in the circuit in Fig. 3 has parameters $V_{TN} = 0.8 \text{ V}$ and $Kn = 0.25 \text{ mA/V}^2$; $V_{DD} = 3 \text{ V}$ and $R_D = 0.5 \text{ k}\Omega$.
 - (a) (5%) Sketch the load line and plot the *Q*-point (working point). Please judge what is the operating bias region for each condition?
 - (b) (5%) Determine the small-signal voltage gain $A\nu$.
 - (c) (5%) Please explain the reason whether the transistor in the circuit could be used as an amplifier or not.

Fig. 3

4. The OP amp shown below is ideal. Determine the numerical values for the questions below.

- (a) (4%) $V_o = ____V_2 + ___V_1$
- (b) (2%) Find the input resistance seen by an input signal source applied at V_1 when V_2 is grounded, $R_{in,1} =$ _____.
- (c) (4%) Find the common mode input resistance for this amplifier,

 $R_{in,CM} = \underline{\hspace{1cm}}$.

所別:<u>光電科學與工程學系碩士班 一般生</u> 科目:<u>電子學 共 4 頁 第 3 頁</u> *請在試卷答案卷(卡)內作答

5. Consider the following amplifier equivalent circuit using a non-ideal OP amp. The OP amp has a finite output resistance R_o and a finite open-loop gain A. The inverting and non-inverting terminals of the OP amp are the V_- and V_+ nodes respectively, and the output terminal is the V_{out} node. All node voltages are referenced to ground.

- (a) (5%) Find the closed-loop gain $A_v = V_{out}/V_{in}$ in terms of R_1 , R_2 , R_o , and A.
- (b) (5%) Find the output impedance R_{out} in terms of R_1 , R_2 , R_o , and A.
- (c) (5%) The amplitude response of the open-loop gain is shown below. Compute the closed-loop voltage gain and output impedance at $f=1~\mathrm{MHz}$.

所別:<u>光電科學與工程學系碩士班 一般生</u> 科目:<u>電子學 共 4 頁 第 4 頁</u> *請在試卷答案卷(卡)內作答

6. Consider the circuit shown below. The transistor Q_1 and Q_2 are identical with $\beta=100$ and $V_{BE}=0.7$ V. Assume the threshold voltage $V_{th}=26~\mathrm{mV}$.

(a) If the voltage at node A is 0.5 V, what are the DC bias points (I_C, V_{CE}) for Q_1 and Q_2 ?

(2%)
$$I_{C1} = _{mA}$$
,

(2%)
$$V_{CE,1} = ____V$$
,

(1%)
$$I_{C2} = _{mA}$$

(1%)
$$V_{CE,2} = V$$
.

(b) Determine the small-signal input resistance for Q_1 and Q_2 :

(2%)
$$r_{\pi 1} = \underline{\hspace{1cm}} \Omega$$
,

(2%)
$$r_{\pi 2} = \Omega$$
.

- (c) (2%) If we consider v_{out} as the output, please specify the type of feedback topology of this circuit.
- (d) (1%, True or False) This feedback operates at DC. Please explain your answer.
- (e) (6%) Find the open-loop gain A =_____.
- (f) (3%) Find the loop-gain $A\beta =$ _____.
- (g) (3%) What is the closed-loop gain of this circuit?

