國立中央大學94學年度碩士班考試入學試題卷 共2頁 第一頁 所別:光電科學研究所碩士班 科目:電子學

(15%) 1. Referring to Fig. 1, find the transfer characteristics $(V_o \ vs. \ V_i)$ for the circuit, where V_o^+ and V_o^- are the saturation output voltage levels of the amplifier.

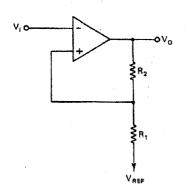


Fig. 1: Question 1

- (20%) 2. Consider the operation of the circuit shown in Fig. 2 for V_B at -1V, 0V, +1V. Assume that V_{BE} is 0.7V for usual currents and that β is very high.
 - (a) What values of V_E and V_C result?
 - (b) At what value of V_B does the emiter current reduce to one-tenth of its value for $V_B = 0V$?
 - (c) For what value of V_B is the transistor just at the edge of conduction? What values of V_E and V_C correspond?
 - (d) For what value of V_B does the transistor reach saturation (when the base-to-collector junction reaches 0.5V for forward bias)? What values of V_C and V_E correspond?
 - (e) Find the value of V_B for which the transistor operates in saturation with a forced β of 2?

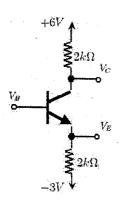


Fig. 2: Problem 2

- (15%) 3. In Fig. 3, assume the diodes D_1 and D_2 have the same threshold voltage V_T , the forward-biased resistance R_f , and the reverse-biased resistance R_r and $R >> R_f + R_s$. Analyze the operation of the output voltage $V_o(t)$ under the below input condition. ($V_T = 0.5V$, $V_{CC} = 10.0V$)
 - $t = 0.0 \sim 5.0 \text{sec}$, $V_1 = 0V$, and $V_2 = 0V$
 - $t = 5.0 \sim 10.0 \mathrm{sec}$, $V_1 = V_{CC}$, and $V_2 = 0V$
 - $t = 10.0 \sim 15.0 \text{sec}$, $V_1 = 0V$, and $V_2 = V_{CC}$
 - $t = 15.0 \sim 20.0 \mathrm{sec}$, $V_1 = V_{CC}$, and $V_2 = V_{CC}$

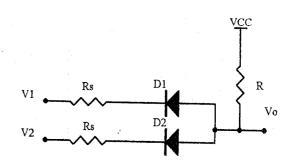


Fig. 3: Problem 3

O. 1.

國立中央大學94學年度碩士班考試入學試題卷 共2頁第2頁 所別:光電科學研究所碩士班 科目:電子學

- (15%) 4. (a) Draw the JK Flip-Flop symbol and describe the true-false table. (5%)
 - (b) If we have a oscillator with 80 MHz frequency, please design a divider circuit to get the 20 MHz and 2.5 MHz using J-K Flip-Flops. (10%)
- (15%) 5. The following logic function $Y=A \bullet B+A \oplus B$.
 - (a) if A=true, B=false, what's Y logic? (2%)
 - (b) draw the logic gate circuit. (3%)
 - (c) realize the function using npn transistor device. (10%)
- (20%) 6. Please use the operation amplifiers, resistors and capacitors to construct the analog computer for the differential equation?

$$2\frac{dx}{dt} + 10x = -5f(x)$$