國立中央大學九十三學年度碩士班研究生入學試題卷 共___頁 第一頁

所別: 統計研究所碩士班 不分組科目: 基礎數學

- 1. Let f(x) and g(x) be continuous on [a,b], $a,b \in R$, a < b and differentiable on (a,b), such that $g'(x) \neq 0$, $\forall x \in (a,b)$. Show that there exists $c \in (a,b)$ such that $\frac{f'(c)}{g'(c)} = \frac{f(c) f(a)}{g(b) g(c)}.$ (10%)
- 2. If $\lim_{x \to a} f(x) = 1$, $\lim_{x \to a} g(x) = \infty$, and $\lim_{x \to a} g(x)(f(x) 1) = \alpha$. Find $\lim_{x \to a} f(x)^{g(x)}$. (10%)

3. Find
$$\lim_{n \to \infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}}$$
. (10%)

4. Find
$$\int_0^\infty \frac{\log x}{1+x^2} dx$$
, $(\log e = 1)$. (10%)

- 5. Let $F(x) = \begin{cases} 1 \frac{\sin x}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$, show that F(x) is continuous and $F(x) \geq 0$ $\forall x \in R$.
- 6. Discuss the solutions of the system of equations

$$\begin{cases} x + y + z + t = 4 \\ x + ay + z + t = 4 \\ x + y + az + (3 - a)t = 6 \end{cases}$$
 where $a \in R$ is fixed.

$$2x + 2y + 2z + at = 6$$

(10%)

7. Let A be an $n \times n$ matrix. Show that

(a)
$$(I_n - A)(I_n + A + A^2 + \dots + A^k) = I_n - A^{k+1}$$

(b) If $A^{\ell} = 0$ for some $\ell \leq k \Longrightarrow I_n - A$ is invertible

(c) Let
$$A = \begin{pmatrix} 2 & 2 & -1 & -1 \\ -1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$
, find A^{-1} . (10%)

- 8. Let $f \cdot R^3 \to R^2$ be defined by f(x, y, z) = (2x y, 2y z). Determine the matrix of f relative to the ordered bases $\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ and $\{(0, 1), (1, 1)\}$. (10%)
- 9. Show that if $\det(A) \neq 0$, then $\det(\operatorname{adj} A) = (\det A)^{n-1}$. (adj $A = \operatorname{the adjoint}$ of A, (adj A)_{ij} $= (-1)^{i+j} \det(A_{ji})$ (10%)
- 10. Show that the eigenvectors corresponding to distinct eigenvalues are linearly independent. (10%)