國立中央大學八十四學年度碩士班研究生入學試題卷

所別: 數學研究所 / 和 科目: 抽象代數 共 / 頁 第 / 頁

- 1. (20 %) Let G be a group with |G| = pq, where p > q are primes and $p \neq 1 \pmod{q}$.

 Show that G must be cyclic.
- 2. (20 %) H is known to be a maximal normal subgroup of a group G if $H \neq G$ and for any normal subgroup K of G properly contain H must coincide with G. A simple group is one having only two normal subgroups. Let H be a normal subgroup of G,

show that H is a maximal normal subgroup of G if and only if G/H is simple.

3. (20 %) An integral domain D is a commutative ring with unity containing no divisors of 0.

Show that finite integral domains are fields.

4. (20 %) A Euclidean valuation on an integral domain D is a function μ mapping the nonzero elements of D into nonnegative integers such that the following conditions are satisfied:

i/ for all $a, b \in D$ with $b \neq 0$, there exist q and r in D such that a = bq + r, where either r = 0 or $\mu(r) < \mu(b)$;

ii/ for all $a, b \in D$, where neither a nor b is $0, \mu(a) \le \mu(ab)$.

An integral domain D is a Euclidean domain if there exists a Euclidean valuation on D.

Prove that every Euclidean domain is a PID (principal ideal domain).

5. (20 %) Let E be a finite field with characteristic p, P be its prime subfield and n be the degree of E as a finite extension over P.

Show that $|E| = p^n$.

END