國立中央大學九十學年度碩士班研究生入學試題卷

所別: 数學系 不分組 科目: 複變函數論 共 1 頁 第 1 頁

All answers must be justified and work must be shown.

- 20% 1. Let $f: \mathbb{C} \{0,1\} \to \mathbb{C}$ be an analytic function on the complex plane except the two points 0 and 1 such that $f(z) = \sum_{n=-\infty}^{\infty} a_n |z^n|$ for |z| > 1, where $a_n = 1$ for n < 0 and $a_n = 1/n!$ for $n \ge 0$. Determine what type of singularity f has at 0, 1 and ∞ .
- 20% 2. Find the smallest integer n such that there is no $z \in \mathbb{C}$ with

$$z^{11} + z^5 + 40z + 1999 = 0$$

and $|z| \ge n$. Explain. (3¹¹ = 177147, 3⁵ = 243, 2¹¹ = 2048, 2⁵ = 32.)

20% 3. Evaluate the integral

$$\int_{0}^{\infty} \frac{\sqrt{x}}{x^2 + 1} \ dx.$$

20% 4. Does there exist an analytic function f in the unit disc $\{z:|z|<1\}$, with the following property

$$f(1/n) = \frac{n}{2+n}$$
 for $n = 1, 2, 3, ...?$

Give an example or prove that it does not exist.

20% 5. Find a conformal mapping of the region $\{z:|z|<1, \text{Im }z>0\}$ onto the disc $\{z:|z|<1\}$. If you use a composition of maps, you need only indicate the individual components.