國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第上頁

所別:機械工程學系碩士班 丙組

P.乙組 丙組 科目:工程數學

Ordinary Differential Equation (33%)

- 1. (a) Please use <u>Laplace Transform</u> to solve the ordinary differential equation of $y'' + 25y = 5\delta(t \pi)$, with initial conditions of y(0) = 3 and y'(0) = 0. Note that δ is the Dirac delta function. (12%)
 - (b) Calculate the values of $y(\pi/2)$ and $y(2\pi)$. (3%)
- 2. Solve y' + y = -2x/y with initial condition of $y(0) = 2 \cdot (10\%)$
- 3. Solve y'' 9y = 0 with y(0) = 1 and y'(0) = 0. Please present your answer in the form of Hyperbolic function. (8%)

Linear Algebra & Vector Calculus (33%)

4. For the linear system Ax = b, where the matrix $A = [a_{ij}]_{3\times 4}$ is given by

$$\mathbf{A} = \begin{bmatrix} -1 & 5 & -1 & -3 \\ 4 & -1 & 2 & 6 \\ 3 & 4 & 1 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- (a) Find all the possible vectors **b** for which the linear system has non-trival solution. (5%)
- (b) Determine the solution x. (5%)
- 5. Use Green'theorem to evaluate $\oint_C \vec{F} \cdot d\vec{R}$, where $\vec{F} = xy\vec{i} + xy^2\vec{j}$ and C: the triangle with vertices (0,0), (3,0), (0,5). Note that the curve C is oriented counterclockwise. (8%)
- 6. Determine the surface area of a sphere of radius a using the technique of surface integral. (8%)
- 7. Let $\{v_1, v_2\}$ span the vector space of inner product in \mathbb{R}^2 . Please answer the following questions.
 - (a) Is it true that v_1 and v_2 must be mutually orthoronal? Explain why or why not. (3%)
 - (b) Give two examples showing that $\{v_1, v_2\}$ is a orthornormal base in \mathbb{R}^2 . (4%)

國立中央大學九十三學年度碩士班研究生入學試題卷

P. 乙組 丙組

所別:機械工程學系碩士班 科目: 工程數學

Fourier Analysis, Partial Differential Equation and Complex Analysis (34%)

The function

$$f(x) = \begin{cases} -1, & -\pi < x < 0 \\ 1, & 0 \le x < \pi \end{cases}$$

- (a) Expand f(x) in a Fourier series. (5%)
- (b) Expand f(x) in a complex Fourier series. (5%)
- 9. (a) Solve the partial differential equation (4%)

$$\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 0$$

(b) Solve the boundary-value problem (10%)

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \qquad 0 < x < \pi, \qquad t > 0$$

$$u(0,t) = 0, \qquad u(\pi,t) = 0, \qquad t > 0$$

$$u(x,0) = \sin x, \qquad 0 < x < \pi.$$

10. Using residue calculus, evaluate (10%)

$$I = \int_0^{2\pi} \frac{\cos 2\theta}{5 - 4\sin \theta} d\theta.$$

