博碩士論文 92333004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.16.188.113
姓名 陳善仕(sam chen)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 沖壓零件用S50C碳鋼具最佳機械性質之沃斯回火熱處理條件
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究主要探討S50C鋼材經不同沃斯回火熱處理條件處理後的機械性質變化。本研究藉由系統化實驗的執行,探討不同沃斯田鐵化或雙相退火溫度(900、745oC)、時間(5、15、30、60分鐘)、不同回火溫度(300、325、350、375、400oC)、時間(15、30、60、120、180分鐘)下S50C鋼材拉伸強度、硬度、延伸率等機械性質的變化,以期在最簡易的熱處理方法下得到所需的機械性能,符合大量生產及低成本的工業界要求。
實驗結果顯示,S50C經900oC沃斯田鐵化再恆溫回火之後,可得下變韌鐵組織或麻田散鐵與下變韌鐵的混合組織,其拉伸強度隨回火溫度的上升而降低。S50C經745oC雙相退火再恆溫回火之後,可得初析肥粒鐵、下變韌鐵與球狀波來鐵的混合組織,其拉伸強度與硬度會隨回火溫度的上升而增加,延伸率則隨之降低,此趨勢則與傳統沃斯回火熱處理相反,其主要原因是S50C經745oC雙相退火再經恆溫回火之後,其機械性質主要是由殘留波來鐵的再結晶數量所主導,而且其主導強硬度變化的殘留波來鐵含量會隨著雙相退火時間的增加而減少,因此拉伸強度隨回火溫度上升而增加的程度,亦會隨雙相退火時間的增加而降低。在回火時間對微結構的影響方面,不論是在沃斯回火恆溫處理或雙相退火恆溫處理,在固定的回火溫度下S50C經過30分鐘的恆溫持時後即可完成主要的相變態,更長的回火時間不會對微結構產生明顯的改變,對機械性質的影響也不大。因此在成本考量之下,實際應用只需要進行30分鐘的恆溫回火持時就已足夠。
S50C藉由不同沃斯回火熱處理條件的組合,可以得到相當廣泛的機械性質,抗拉強度範圍為596 ~ 1930 MPa,硬度範圍為HR30N 36 ~ 72,延伸率範圍為4.6 ~ 28.7%,將可適用於不同用途之機械零組件。
摘要(英) Abstract
The purpose of this research is to study the mechanical properties of S50C steel under various austempering treatments. Through systematic experiments, the variation of mechanical properties (tensile strength, hardness, and elongation) with the temperature (900 and 745oC) and time (5, 15, 30, and 60 min) in austenitizing or intercritical annealing and temperature (300, 325, 350, 375, and 400oC) and time (15, 30, 60, 120, and 180 min) in isothermal tempering was characterized. In this way, it is hoped that a simple low-cost heat-treatment technique suitable for mass production could be developed to meet the various needs of mechanical properties of S50C steel in industry.
Results showed that the S50C could have a microstructure of bainite or mixed martensite and lower bainite after going through the given austempering treatments and that the tensile strength was reduced when the tempering temperature was increased. On the other hand, S50C can have a microstructure of mixed proeutectoid ferrite, bainite and globoular pearlite after going through the given intercritical annealing plus isothermal tempering treatments and that the tensile strength and hardness were increased with tempering temperature. This trend is opposite to that in conventional austempering treatment and the main reason is that the S50C mechanical properties are controlled by the extent of recrystallization of the residual pearlite after going through the intercritical annealing and isothermal tempering. The content of residual pearlite was reduced when the time of intercritical annealing is increased. Accordingly, the degree of increase in tensile strength with tempering temperature would be reduced with an increase in intercritical annealing time. The effects of tempering time on the microstructure became saturated after 30 min in both austempering treatment and intercritical annealing plus isothermal tempering treatment. This means that for a given tempering temperature the transformation of microstructure was almost completed within 30 min. In this regard, increasing tempering time longer than 30 min will not change the microstructure and mechanical properties. Under consideration of cost, it is therefore suggested to let the isothermal tempering process last just for 30 min in practical use.
By the combination of different austempering conditions, S50C steel can have a variety of mechanical properties with the tensile strength ranging from 596 to 1930 MPa, the hardness ranging from HR30N 36 to 72, and the elongation ranging from 4.6 to 28.7%. This wide range of mechanical properties could make S50C steel suitable for use in various mechanical components.
論文目次 目錄
頁數
表目錄 VI
圖目錄 VII
第一章 簡介 1
1-1 S50C鋼材使用狀況與化學成分 1
1-2 S50C碳鋼熱處理與微結構 2
1-3?S50C之沃斯回火熱處理 8
1-4 S50C之改良式沃斯回火熱處理 9
1-5研究目的 11
第二章 實驗步驟 12
2-1材料成份與母材 12
2-2試片製作與取樣 12
2-3 S50C之傳統沃斯回火熱處理 12
2-4 S50C之改良式沃斯回火熱處理 13
2-5硬度試驗 13
2-6拉伸試驗 13
2-7微結構觀察 14
第三章 結果與討論 15
3-1傳統沃斯回火熱處理對S50C機械性質及微結構之影響 15
3-1-1回火時間對機械性質的影響 16
3-1-2回火溫度對機械性質的影響 17
3-2改良式沃斯回火熱處理對S50C機械性質及微結構的影響 18
3-2-1雙相退火時間對機械性質的影響 21
3-2-2恆溫回火條件對機械性質的影響 21
第四章 結論 24
參考文獻 25
表 27
圖 38
參考文獻 1. 陳文照、曾春風、游信和, 材料科學與工程導論, 高立圖書有限公司, 台北, 2005, pp. 36-97, pp.123-154, pp.197-205, pp. 326-355, pp. 363-367, pp.390-411.
2. R. W. K. Homeycombe and H. K. D. H. Bhadeshia, 鋼顯微組織與性質, 2nd ed., Elsevier Ltd., Kidlington, England, 2004, pp. 2-10, pp. 18-59, pp. 93-152.
3. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚, 工程材料科學, 全華科技圖書, 台北, 2005, pp. 207-209, pp. 277-286, pp. 306-343, pp. 400-475.
4. 黃振賢, 金屬熱處理, 文京圖書出版, 台北, 1985, pp. 1-111, pp. 491-499.
5. Y. A. Cengel and M. A. Boles, Thermodynamics An Engineering Approach, 3rd ed., McGraw-Hill, Inc., New York, 2000, pp. 621-695.
6. Y. Tomita, “Effect of Modified Austemper on Tensile Properties of 0.52%C Steel,” Materials Science and Technology, Vol. 11, 1995, pp. 994-997.
7. Y. Tomita, E. Matsushita, and K. Morioka, “Modified Austempering Effect on Tensile Properties of Fe-0.2-1.5Si-1.0Mn Steel,” Zeitschrift Fur Metallkunde, Vol. 91, 2000, pp. 175-179.
8. S. K. Putatunda, “Influence of Austempering Temperature on Microstructure and Fracture Toughness of a High-Carton and High-Manganese Cast Steel,” Materials and Design, Vol. 24, 2003, pp. 435-443.
9. A. Barbacki and E. Mikolajski, “Optimization of Heat Treatment Conditions for Maximum Toughness of High Strength Silicon Steel,” Journal of Materials Processing Technology, Vol. 78, 1998, pp. 18-23.
10. Y. Tomita, F. Kijima, and K. Morioka, “Modified Austempering Effect on Fracture Toughness JIC of Fe-0.6C-1.5Si-0.8Mn Steel,” Zeitschrift Fur Metallkunde, Vol. 90, 1999, pp. 444-448.
11. Y. Tomita, F. Kijima, and K. Morioka, “Modified Austempering Effect on Bending Fatigue Properties of Fe-0.6C-1.5Si-0.8Mn Steel,” Zeitschrift Fur Metallkunde, Vol. 91, 2000, pp. 43-46.
12. Y. Tomita and N. Ishiza, “Improved Tensile Properties of Fe-0.6C-1.5Si-0.8Mn Steel Through Modified Austempering Treatment,” Zeitschrift Fur Metallkunde, Vol. 86, 1995, pp. 575-579.
13. Y. Tomita, “Improved Tensile Properties of Fe-0.6C-1.5Si-0.8Mn Steel Through Austempering Coupled with Interrupted Quenching Treatment,” Zeitschrift Fur Metallkunde, Vol. 86, 1995, pp. 750-753.
14. H. S. Fang, J. B. Yang, Z. G. Yang, and B. Z. Bai, “The Mechanism of Bainite Transformation in Steels,” Scripta Materialia, Vol. 47, 2002, pp. 157-162.
15. “Standard Test Methods for Tension Testing of Metallic Materials [Metric],” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 78-98.
16. 綱島正一, 熱處理技術與實務, 財團法人中衛發展中心, 台北, 2003, pp. 69-75.
17. 寇立人, 鋼材之性能與利用, 復漢出版社有限公司, 台北, 2001.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2006-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明