博碩士論文 89326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:3.145.45.170
姓名 呂理德(Li-TE LU)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台北都會區外圍城市大氣氣膠光學效應
(The effect of Atmosphere aerosol optical in Taipei at HSIN-CHUANG)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠由於化學組成、粒徑分布、形狀等差異,造成氣膠在光學效應影響的變化,進而影響地球接收太陽輻射。
本文選擇超級測站在2002年3~9月間,於台北縣新莊市進行的氣膠粒徑與散光係數連續監測監測資料,配合鄰近環保署新莊空氣品質監測站資料,並區分特殊事件的影響,用來分析新莊地區氣膠在光學效應的影響。
新莊地區下午兩點到晚上十一點氣膠散光係數和相對濕度成高度正相關(R2>0.80),且背散光係數對總散光係數貢獻比例降低。當散光係數與相對濕度關係良好時(R2>0.75),散光係數和硝酸鹽與一氧化碳、臭氧和二氧化氮的變化呈高度相關。背散光係數和0.1~0.5mm粒徑範圍內的氣膠變動呈正相關,並發現在這範圍內氣膠對相對溼度變化敏感。
本文監測期間的特殊事件,發現第二波大陸黃沙事件影響台灣期間不同波段背散射對總散射的貢獻有收斂的現象發生,並可以觀察到紅光波段背散光係數對總散光係數的比例有一段時間維持變動很小。黃沙事件期間氣膠的體積濃度主要自於2.5~10mm範圍內體積濃度的貢獻。
本文三月到九月每天早上7~9點氣膠吸光效應對散光效應貢獻最高的時間,發現OC/EC=2 (R2=0.83),代表當OC/EC>2時,有二次OC的影響。
新莊地區三月至九月散光係數與化學組成的多元線性迴歸為綠光總散光係數(Mm-1)=16〔Sulfate(mgm-3)〕+16〔Nitrate(mgm-3) 〕+6〔Organic carbon(mgm-3)〕-14,此一迴歸模式大約可以解釋新莊地區80%(R2=0.8)散光係數的變化。另外得到新莊地區的BC/EC的質量吸光效率為22±35(m2g-1)。
新莊地區春季散光係數高於夏季,背散射對總散射的貢獻比例有明顯的季節性差異,夏季高於春季,但是並沒有發現吸光係數有季節性的差異存在。
推估氣膠輻射作用力,可以知道新莊地區的臨界單一散射率(critical single scattering albedo)為0.82,並可以觀察到散射率是有明顯的季節差異存在,當新莊地區氣膠散光係數大於99Mm-1,氣膠的存在是會導致新莊地區的大氣輻射冷卻。
摘要(英) Because the discriminations of aerosol’s chemical components, size distributions and morphology, optical variations of aerosols would influence solar radiation emitted on earth and further the climate change. In this thesis, aerosol size distribution and scattering coefficient datas continually monitored in Taiwan supersite sited in HSIN-CHUANG from March to September in 2002 and Air quality datas monitored synchronously in another site nearby setup by Taiwan Environmental Protection Agency was chosen to be analyzed particularly for aerosols’ optical effects.
Analysis revealed that aerosol scattering coefficient was highly positive- correlated(R2>0.80) with relative humidity from 14:00pm to 23:00pm and contribution of backward scattering coefficient in total scattering coefficient was reduced at the same period. When scattering coefficient was well correlated(R2>0.75) with relative humidity, it was also found that scattering coefficient was highly positive-correlated with concentration of nitrate, carbon monoxide, ozone and nitrogen dioxide. Beside, backward scattering coefficient was positive-correlated with variation of aerosol concentration. Aerosol concentration was very sensitive with variation of relative humidity especially with particle size within 0.1~0.5μm.
Detail analysis of episodes happened from March to September in 2002 has discovered that during the period of the second event of Yellow Dusts influencing Taiwan area, backward scattering of aerosols induced by different wave length light contributed total scattering convergently. It was observed that backward scattering contributed to total scattering induced by red light vary in small amplitude at some periods in that episode. Aerosol volume concentration was mainly due to particle size with 2.5~10μm during the period of Yellow Dusts.
From the regression of organic carbon(OC) and elemental carbon(EC) concentration monitored from 7:00am to 9:00am(the period of aerosol absorption effect contributed scattering effect most), it was found that OC/EC=2(R2=0.83) which represented that there existed secondly organic aerosol when OC/EC>2. Also the regression of green light scattering coefficient and chemical components was formulated as
TG(Mm-1)=16Sulfate(μgm-3)+ 16Nitrate(μgm-3)+ 6Organic carbon(μgm-3)-14.
It was found the formula above could explain about 80% variations of scattering coefficient datas.
In HSIN-CHUANG area, scattering coefficient in spring was higher than that in summer. There was seasonal variations in the ratios of backward scattering to total scattering. The ratio was higher in summer than that in spring. Instead, it was not found that absorption coefficient varied seasonally.
By evaluating the radiative forcing, the critical single scattering albedo in HSIN-CHUANG area was about 0.82. It was obviously observed that the scattering rates varied seasonally. When aerosol scattering coefficient was above 99Mm-1, the existence of aerosols suspended would cool the atmospheric radiation.
關鍵字(中) ★ 粒徑分布
★ 氣膠光學效應
★ 即時監測值
★ 黃沙時期
關鍵字(英) ★ scattering effect
★ Yellow Dust
★ size distribution
★ continually monitoring
★ aerosol optical effect
論文目次 目錄
第一章前言
1. 1研究動機………………………………………………..…………..1
1.2研究目的…………………………….………………….……………2
第二章文獻回顧
2.1大氣氣膠的組成與分類的粒徑分布…………………………….….4
2.2吸光效應………………………………………………………….….5
2.3 散光效應…………………………………………………….………7
2.4氣膠的消光光學效應………………………………………………10
2.5多元線性迴歸消光模式…………………………………………….11
2.5大氣氣膠在輻射作用力的影響……………………………………12
第三章研究方法及步驟
3.1監測時程及觀測地點描述…………………………………………15
3.2氣膠特性的監測及採集方法………………………………………19
第四章結果與討論
4.1氣象條件與即時監測儀器的關係…………………………....20
4.1.1風速和即時監測儀器的關係……………………………….20
4.1.2風向與即時監測儀器的關係……………………………….21
4.2氣膠光學特性的影響…………………………………………….…27
4.2.1氣膠散光效應探討……………………………………….….27
4.2.1.1散光係數與相對濕度的關係…………………………….27
4.2.1.2背散光係數與相對濕度的關係 ……………..……….…29
4.2.1.3不同波長下背散光係數對貢獻與相對濕度的關係……30
4.2.1.4氣膠散光係數和相對濕度關係案例討論…………….34
4.2.1.4.1案例資料初步分析………………………………….34
4.2.1.4.2氣膠來源與前驅氣體與氣象的關係…………….…42
4.2.1.4.3氣膠的散光係數和背散光係數的關係…………….48
4.2.1.4.4氣膠的散光係數和背散光係數與粒徑變化的關係.49
4.2.1.4.5氣膠的散光效應與相對濕度和粒徑變化的關係.…55
4.2.1.5散光係數與粒徑分布之關係…………………..………..64
4.2.1.6散光係數與氣膠化學組成的多元迴歸………..………..68
4.2.2氣膠之吸光係數探討…………..………………………..…....70
4.2.2.1不同波長下吸光係數與相對濕度的關係…………..…..70
4.2.2.2吸光係數與吸光物種的多元迴歸分析…………….…...74
4.3特殊事件探討…………………………………………………...…..75
4.3.1黃沙期間氣膠化學組成與光學特性的變化趨勢……………75
4.3.1.1黃沙時期時間的劃分………………………………...…75
4.3.1.2黃沙時期氣膠化學組成變化趨勢………………………75
4.3.1.3黃沙時期氣膠光學的變化趨勢…………………………87
4.3.1.4第二波黃沙事件分析…………………………………92
4.3.1.4.1第二波黃沙事件光學變化特性…………………92
4.3.1.4.2第二波黃沙事件粒徑變化特性…………………97
4.3.1.5第三波黃沙事件分析……………..……………………103
4.3.1.5.1第三波黃沙事件光學變化特性…………..…….…103
4.3.1.5.2第三波黃沙事件粒徑變化特性………..……….…110
4.3.1.6黃沙事件的影響……………..…………………………115
4.3.1.7黃沙事件特殊現象探討……………………..…………117
4.3.2凌晨降濕與增濕期間散光係數變化之探討……….…….…130
4.3.3新莊地區光學效應對消光效應的影響…………….…….…139
4.3.3.1新莊地區吸光效應對消光效應的影響………………139
4.3.3.2新莊地區散光效應對消光效應的影響………………144
4.4氣膠對輻射作用力的影響………………………………………...147
4.4.1輻射作用力的推估……………………………………..……156
4.4.1.1地表反照率對氣膠輻射作用力推估的影響…………158
4.4.1.2氣膠單一散射率與氣膠輻射作用力的關係…………160
4.4.1.3氣膠輻射作用力推估參數變動的影響………………167
4.4.1.4光學厚度的變化……………………………….…..….169
4.4.1.4.1新莊地區氣膠光學效應與其它地區的比較….….174
4.4.1.5輻射作用力推估模式代入參數的差異在推估模式上的影響探討.
…………………….…….………………...180
第五章結論與建議
5.1結論……………………………………………………..………..183
5.2建議…. …………………………………………………………..186
第六章參考文獻…..…..…..….…………..……..………..….….….…187
參考文獻 參考文獻
彭啟明、林忪錦,1995「台灣北部地區混合層高度的觀測與模擬」,大氣科學,23,311-336。
彭啟明﹙1993﹚「台灣北部地區混合層高度的觀測與模擬」,國立中央大學物理研究所碩士論文。
林姵吟﹙2001﹚「台北都會區黃沙時期氣膠特性」,國立中央大學環境工程研究所碩士論文。
Anderson, T. L., Ogren. J. A., 1998. Determination aerosol radiative properties using the TSI 3563 Integration Nephelometer. Aerosol Science and Technology 29, 59-69.
Bergin, M.H., Cass, G., Xu, J., Fang, C., Zeng, L., Tong, Y., Kiang, C.S., Chameides, W.L., 2001. Aerosol radiative, physical and chemical properties in Beijing during June, 1999. Journal of Geophysical Research, in press.
Bodhaine, B. A., 1995. Aerosol absorption measurements at Barrow, Mauna, Loa and the South Pole. Journal Geophysical Research D100,8967-8975.
Boucher, O., Anderson, T. L., 1995. General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal Geophysical Research 100 ,26117-26134.
Carrico, C.M., Rood, M.J., Orgen, J.A., Neusub, C. Wiedensohler, A. and Heintzenberg, J., 2000. Aerosol optical properties at Sagres, Portugal during ACE-2. Tellus 52B, 694-715.
Carrico, C.M., Bergin, M.H., Xu, J., Baumann, K., Maring, H., 2001. Urban PM2.5 optical properties in relation to physical and chemical properties during the Atlanta supersite 1999 experiment, Journal of Geophysical Research, submitted for publication.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D. and Bailey, G.M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression technniques. Atmospheric Environment 33, 3237-3250.
Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A. JR., Hansen, J.E. and Hofmann, D.J., 1992. Climate forcing by anthropogenic aerosols. Science,. 255, 423-430.
Cofer Ⅲ, W.R., Anderson, B.E., Winstead, E.L. and Bagwell, D.R., 1998. Calibration and demonstration of condensation nuclei counting system for airborne measurements of aircraft exhausted particles. Atmospheric Environment. 32, 169-177.
Colbeck, l., Hardman, E. J., Harrison, R.M., 1989. Optical and dynamical properties and morphology of cloud-processed carbonaceous smoke. Journal of Aerosol Science 20,765-774.
Draxler, R.R., 1999.Hybrid single-particle lagrangian integrated trajectories(HYSPLIT): Version 4.0- User、s Guide.NOAA Technical Memorandum ERL ARL-230,Air Resources Laboratory, Silver Spring, Md, USA.
Dubovoi, S. E., 2002. Aerosol impacts on visible light extinction in the atmosphere of Mexico City. The Science of the Total Environment 287, 213-220.
Evans, W.F.J., Puckrin, E., 2001. The surface radiative of nitric acid for northern mid-latitudes. Atmospheric E'nvironment. 35, 71-77.
Gebhart, K. A., Malm, W. C., Day, D., 1994. Examination of the effects of sulfate acidity and relative humidity on light scattering at Shenandoah National Park. Atmospheric Environment., 28, 841-849.
Gundel, L. A., Dod, R. L., Rosen, H., Novakov, T., 1984. The relationship between optical attenuation and black carbon concentration for ambient and source particles. Science of Total Environment 36,197-202
Hansen, J. E., 1980. Climatic effects of atmospheric aerosols. Science 338, 575-585.
Hauglustaine, D.A., Granier, C., Brasseur, G.P., Megie, G., 1994. The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. Journal of Geophysical Research 991173-1186.
Hanel, Gottfried., 1998. Vertical profiles of the scattering coefficient of dry atmospheric particles over Europe normalized to air at standard temperature and pressure. Atmospheric Environment, 32, 1743-1755.
Haywood, J.M., Shine, R.P., 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters 22, 603-606.
Heintzenberg, J., 1995. Aerosol and climate change. Journal of Aerosol Science 26, s1-s2.
Hitzenberger, R., Berner, A., Dusek, U. and Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Science and Technology 27, 116-130.
Horvath, H., 1993. Atmospheric light absorption. Atmospheric Environment 27A, 293-317.
Horvath, H., 1996. Spectral extinction coefficients of rural aerosol in southern Italy-A case study of cause and effect of variability of atmospheric aerosol. Journal of Aerosol Science 27, 437-453.
Horvath, H., 1997. Systematic deviations of light absorption measurements by filter transmission methods. Journal of Aerosol Science 28, 55-56.
Horvath, H., 1997. Experimental calibration for aerosol light absorption measurements using the integrating plate method-summary of the data. Journal of Aerosol Science 28, 1149-1161
IPCC, Climate Change, 1995. In: Houghton J. T. et al.(Eds), Raaiative Forcing of Climate Change.Cambriage University Press, Cambriage, New York.
Xu, Jin., Bergin, M.H., Yu, X., Liu, G., Zhao, J., Carrico, C.M., Baumann, k., 2002.Measurement of aerosol chemical, physical and radiative properties in the Yangtze region of China. Atmosphere Environment 36 ,161-173.
Kaufman, Y. J., Smirnov, A.,Holben, B. N., Dubovik., 2001.Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties. Geophysical Research Letters 28, 3251-3254.
Kiehl, J.T., Briegleb, B.P., 1993. The radiative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
Koloutsou-Vakakis, S., Carrico, C.M., Li, Z., Rood, M.J., Ogren, J.A., 1999. Characterisation of aerosol properties and radiative forcing at an anthropogenically perturbed continental site. Phys. Chem. Earth © 24, 541-546.
Lacis, A., Hansen., Sato, M., 1992. Climate forcing by stratospheric with two-dimensional model. Geophysical Research Letters 11, 1607-1610.
Li, X., Zhou, X., Li, W., Chen, L., 1995. The cooling of Sichuan province in recent 40 years and its probable mechanisms. Acta Metallurgica Sinica 9, 57–68.
Liousse C., Cachier, H., Jennings, S. G., 1993. Option and thermal measurements of black carbon aerosol content indifferent environment: variation of the specific attenuation cross-section, sigma (σ). Atmospheric Environment 27A, 1203-1211.
Liu, Y., Daum, P.H., 2000. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. Journal of Aerosol Science 31, 945-957
Logan, J.A., Prather, M.J., Wofsy, S.C., McElroy, M.B., 1981. Troposphereic chemistry: A global perspective. Journal of Geophysical Research 86, 7210-7254.
Lowenthal, D.H., Chow, J.C. and Saxena, P., 2000. Contributions to light extinction during project MOHAVE. Atmospheric Environment 34, 2351-2359.
Lowenthal, D.H., Rogers, C.F., Saxena, P., Watson, J.G., Chow, J.C., 1995. Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors. Atmospheric Environment 29, 751-766.
Maenhaut, W., Cafmeyer, J., Ptasinski, J., Andreae, M.O., Andreae, T.W., Elbert, W., Meixner, F.X., Karnieli, A., Ichoku, C., 1997. Chemical composition and light scattering of the atmospheric aerosol at a remote site in the Negev Desert, Israel. Journal of Aerosol Science 28, 73-74.
Malm, W. C., Kreidenweis, S. M., 1997. The effect of models of aerosol hygroscopicity on the apportionment of extinctoin. Atmospheric Environment 31, 1965-1976.
Marcazzan, G.M., Persico, F., 1996. Evaluation of mixing layer depth in Milan town from temporal variation of atmospheric radioactive aerosols. Journal of Aerosol Science 27, 21-22.
Marshall, S.F., Covert, D.S., Charlson, R.J., 1995. Relationship between asymmetry parameter and hemispheric backscatter ratio: implications for climate forcing by aerosols. Applied Optics 34, 6306-6311.
McMurry, P. H., Litchy, M., Huang, P., Cal, X., Turpin, B. J., Dick, W. D., Hanson, A., 1996. Elememtal composition and morphplpgy of individual particles separated by size and hygroscopicity with the TDMA. Atmospheric Environment 30, 101-108.
Meszaros, E., Molnar, A., Ogren, J., 1998. Scattering and absorption coefficient v.s chemical composition of fine atmospheric aerosol particles under regional conditions in humidity. Journal of Aerosol Science 29, 1171-1178.
Nair, P. R, Moorthy, K. K., 1998. Effects of changes in atmospheric water vapor content on physical properties of atmospheric aerosols at a coastal station. Journal of atmospheric and solar-Terrestrial Physics 60, 563-572.
Ogren, J. A., 1996. A systematic approach to in-situ observations of aerosol properties, in Aerosol Forcing of Climate Change.National Academy Press, Washington.
Penner, J.E., Dickinson, R.E., O'Neill, C.A., 1992. Effect of aerosol from biomass burning on the global radiation budget. Science 256, 1432-1433.
Petzold, A., Niessner, R., 1995a. Intercomparison study on soot-selective methods-field study results from several polluted area in Germany. Journal of Aerosol Science 26, s393-394.
Petzold, A., Niessner, R., 1995b. Method comparison study on soot-selective techniques. Mikrochim Acta 117, s393-394.
Pitchford, M. L., McMurry, P.H., 1994. Relationship between measured water vapor growth and chemistry of atmospheric aerosol for Grand Canyon, Arizona, in winter 1990. Atmospheric Environment 28, 827-839.
Quinn, P.K., Marshall, S.F., Bates, T.S., Covert, D.S., Kapustin, V.N., 1995. Comparsion of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. Journal Geophysical Research 1, 8977-8991.
Rossow, W. B., Schiffer, R. A., 1991, ISCCP Cloud Data Products.72, Bulletin of the American Meteorological Society, 2-20.
Rowland, F.S., Isaksen, I.S.A., 1988. The Changing Atmosphere. Wiley, New York, 281pp.
Sailor, D. J., Fan, H., 2002. Modeling the diurnal variability of effective albedo for cities. Atmospheric Environment 36, 713-725.
Schnell, R. C., Kuniyuki, D. T., Bodhaine B. A., Hansen A.D.A., 1994.The dust component of aerosol light absorption measured at Mauna Loa Observatory. Paper presented at the 5th Int. Conf. On Carbonaceous Particles in the Atmosphere, Lawrence Berkeley Lab., Berkeley, California, 23-26 August 1994.
Schwartz, S.E., 1996. The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols: an overview. Journal of Aerosol Science 3, 359-382.
Sheridan, P., Barnes, J., Bergin, M., Doorenbosch, M., Huang, W., Je.erson, A., Ogren, J., Sheridan, P.J., Ogren, J.A., 1998. Vertical and regional variability of aerosol optical properties over the central and eastern United States, southeastern Canada, and the western Atlantic Ocean. Journal of Geophysical Research, submitted for publication.
Smith, D.J.T., Harrison, R.M., Luhana, L., Pio, C.A., Castro, L.M., Tariq, M.N., Hayat, S. and Quraishi, T., 1996. Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmospheric Environment 30, 4031-4040.
Stein, S. W., Turpin, B. J., Cal, X., Huang, P., McMurry, P. H., 1994. Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-Impactor technique. Atmospheric Enviroment 28, 1739-1746.
Streets, David. G., Gupat, Shalini., Waldhoff, Stephanie. T., Wang, Michael. Q.,Bond, Tami. C., Yiyun, Bo., 2001.Black carbon emission in China. Atmospheric Environment 35,4281-4296.
Taha, H., 1994. Aircraft-based albedo measurements over the South Coast Air Basin, in H. Taha (ed.), Analysis of Energy Efficieny of Air Quality in the South Coast Air Basin-Phase II. Berkely, CA, 43-59.
Taha, H., 1997. Urban climates and islands: alb aledo, evapotranspiration, and anthropogenic heat. Energy and Buildings 25, 99-103.
Qiu ,Jinhuan., Yang Liquan., 2000.Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994. Atmospheric Environment 34, 603-609.
Waggoner, A.P., Weiss, R.E., Ahlquist, N.C., Covert, D.S., Will, S., Charlson, R.J., 1981. Optical characteristics of atmospheric aerosols. Atmospheric Environment 15, 1891–1909.
Weingartner, E., Baltensperger, U. and Burtcher, H., 1995. Growth and structural changes of combustion aerosols at high relative humidity. Journal of Atmosphere Science 26, 667-668.
White, W. H., 1986. On the theoretical and empirical basis for apportioning extinction by aerosols: a critical review. Atmospheric Environment 20, 1659-1672.
White, W. H., Roberts, P. T., 1997. On the nature and origins of visibility-reducing aerosols in the Los Angeles air Basin. Atmospheric Environment 11, 803-812.
Wiscombe, W. J., Grams, G. W., 1976. The backscattered fraction in two-stream approximations. Journal of Atmosphere Science 33, 2400-2451.
Yu, Shaocai., Zender, Charles. S., Saxena, V. K., 2001.Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern US: model estimate on the basis of new observations. Atmospheric Environment 35, 3967-3977.
指導教授 李崇德(Chung-Te Lee) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明