博碩士論文 92326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.222.183.63
姓名 沈士翔(Shi-Shung Shen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 綜觀天氣及不同氣流軌跡影響下的北台灣氣膠特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來中國大陸工業污染排放及沙塵傳輸頗受國際上的重視,這些污染及沙塵氣膠隨著天氣系統的移動,有時候會影響台灣的空氣品質。本研究選定台灣最北端的台北縣石門鄉進行氣膠的觀測,採樣時間為2004年5月至2005年4月,當台灣受大陸性冷高壓南下影響時,石門是位於台灣本島首當其衝的位置,因而可以檢驗長程傳輸氣膠的特性。
在冷高壓事件發生期間氣膠質量濃度和SO2都有增加的現象,在非冷高壓時期則因為污染來源是以當地排放為主,各成分濃度明顯都較低。在冷高壓事件水溶性離子集中在NH4+及SO42-,其含量較冷高壓事件前後更高,可見受大陸污染物影響的程度增加。另外,冷高壓事件期間碳成分的揮發有機碳 (OP) 和低溫元素碳 (EC1) 所佔比例有較顯著的增加。
採樣期間四種氣流軌跡類型中以大陸沿岸傳輸的氣膠質量濃度最高,同時發現SO2 / NOx的比值也是最高,尖峰粒徑集中在0.56~1及3.2~5.6 µm,水溶性離子優勢物種為SO42-及NH4+。高壓迴流質量濃度僅次於大陸沿岸傳輸,尖峰粒徑也是0.56~1及3.2~5.6 µm,最大的不同是硝酸鹽的濃度高於大陸沿岸傳輸,可見其污染來源的差異。本地污染來源與海洋傳輸都屬濃度較低的類型,但海洋傳輸PM2.5 / PM10比僅約0.4,本地污染來源則可達0.6以上,且本地污染來源NOx濃度是所有類型最高者。在碳成分組成方面,本地污染來源次低溫元素碳 (EC2)所佔比例為所有類型最高者,海洋傳輸則是有機碳比例較高,且元素碳含量相當低,大陸沿岸傳輸OP及EC1有較顯著的成長,高壓迴流則是以中高溫度揮發有機碳所佔比例較高。
2005年大陸沙塵到達台灣之前,PM2.5質量濃度往往先有增加的現象,這是人為污染物被黃沙強風氣流帶動的現象。黃沙時期粗微粒的3.2~5.6 µm粒徑區間會有顯著的提升,細微粒則是以0.32~0.56 µm與0.56~1 µm的增加幅度最大。在沙塵影響較明顯的的時段,發現Ca2+、CO32-及PM2.5-10變化趨勢非常相近,表示沙塵是以粗微粒為主,並以CaCO3的型態存在。碳成分方面,黃沙時期有機碳所佔比例下降,但EC1則有增加的現象。微粒低分子量二元酸以oxalic acid的含量最高,且黃沙時期oxalic acid濃度略有增加,說明長程傳輸可能帶來oxalic acid。
當以氣流軌跡加以區分時,發現各氣流軌跡類型除絕對量上的差異外,在化學組成方面也都具有不同的特徵,這說明了以氣流軌跡分類區分氣膠特性的有效性。而針對黃沙事件所進行的分類,也可以很明顯的看出沙塵所帶來的影響,非黃沙時期與黃沙時期在物種組成比例及物種比值特徵皆有顯著的不同。
摘要(英) Recently, the China outflow and yellow-dust transport gained a lot of concerns globally. These pollutants and dusts moved by the weather system frequently influenced Taiwan air quality. In this study, aerosol observation was conducted at Shin-Men site, the northern tip of Taiwan, to investigate aerosol properties from long-range transport.
Aerosol concentration and SO2 were found elevated under the influence of cold continental high. In contrast, local emissions were dominant to result in low pollution level during non-cold-high period. The SO42- and NH4+ are dominant aerosol water-soluble ions and are higher than those in the time before and after the cold high event. Meanwhile, aerosol volatile organic carbon (OP) and low-temperature elemental carbon (EC1) were significantly increased in cold high event.
Among the four trajectory types, the transport along the China’s coast is with the highest aerosol level and the highest SO2/NOx ratio. The aerosols were distributed in 0.56-1.0 µm and 3.2-5.6 µm modes with SO42- and NH4+ as dominant aerosol water-soluble ions. The type of anti-cyclonic outflow is only less severe than the transport along the China’s coast in aerosol level and its aerosols are also distribution in 0.56-1.0 µm and 3.2-5.6 µm modes. The main difference between these two types is higher aerosol nitrate in anti-cyclonic outflow than the transport along the China’s coast. The local source contribution and oceanic transport are the two types with lower aerosol level. However, the ratio of PM2.5/PM10 is only 0.4 in oceanic transport as compared to 0.6 in local source contribution. In addition, the NOx concentration is the highest for local source contribution among all types. In aerosol carbon fractions, the second low-temperature elemental carbon (EC2) is the greatest in local source contribution among all types. The oceanic transport is featured with very low EC level but high organic fraction. The OP and EC1 are found significantly in the transport along the China’s coast. The anti-cyclonic outflow is with higher fractions in middle to high temperature OC.
The PM2.5 level in 2005 was found increased before the touch down of yellow dusts due to the contributions of industrial emissions forced by the frontal system. Coarse particles in the size range of 3.2-5.6 µm were significantly increased in contrast to the enhancement of 0.32-0.56µm and 0.56-1.0 µm in fine particles during the dust period. For the time periods when the dusts were significant, Ca2+, CO32-, and PM2.5-10 varied consistently which indicates that dusts are mainly in the coarse fraction and in the form of CaCO3. For aerosol carbons, the fraction of OC was decreased but EC1 was increased during the yellow-dust affected period. The most abundant low molecular-weight dicarboxylic acid was oxalic acid, which was slightly increased in the dust period. It indicates that oxalic acid could be in the air mass of the long-range transport.
For aerosol properties classified by trajectory types, the distinction was found for each type of aerosols both in concentration as well as in mass fraction. This demonstrates the usefulness of classification of aerosol properties by trajectory type. In addition, we can find that the influences of Asian-dust distinctly by classifying Asian-dust events into three periods. The compositions and the characterics of ratio in “non-yellow-dust” are different from “yellow-dust” obveriously.
關鍵字(中) ★ 氣膠化學成份
★ 長程傳輸
★ 綜觀天氣型態
★ 氣流軌跡線
關鍵字(英) ★ aerosol chemical properties
★ Long-range transport
★ synoptic weather pattern
★ Air trajectory
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠來源與特性 3
2.1.1 氣膠的分類與來源 3
2.1.2 氣膠特性與粒徑分布 4
2.2 氣膠水溶性離子化學特性 8
2.2.1 氣膠水溶性離子結合型態與來源 9
2.2.2 水溶性離子對大氣氣膠酸度的影響 13
2.2.3 硫酸鹽及硝酸鹽轉化現象 16
2.2.4 風速對海鹽的影響 17
2.3氣膠碳成分化學特性 18
2.3.1 碳成分主要來源 18
2.3.2 二次有機碳的估算 19
2.3.3 氣膠碳成分組成特徵 21
2.4 黃沙時期氣膠特性 28
2.4.1 沙塵影響期間氣膠污染物的變化 28
2.4.2 黃沙時期氣膠的傳輸與組成 29
2.4.3 黃沙時期塵土微粒的混合型態 33
2.5 大氣中二元酸的優勢物種與來源 34
第三章 研究方法 37
3.1採樣方法與採樣儀器 39
3.1.1 採樣時間 39
3.1.2 採樣地點四週環境描述 40
3.1.3 採樣儀器 45
3.1.3.1 人工採樣器 45
3.1.3.2 自動監測儀 54
3.1.3.3 採樣器標準操作程序 57
3.1.4 採樣濾紙的選擇及前處理程序 64
3.1.4.1 儀器與濾紙配置 64
3.1.4.2 濾紙的前處理 66
3.1.4.3 樣品的運送與保存 66
3.2 樣本分析方法 67
3.2.1 氣膠質量濃度分析 67
3.2.2 氣膠水溶性離子分析 67
3.2.3 氣膠元素成分分析 68
3.2.4 氣膠碳成分分析 70
3.2.5 二元有機酸分析方法 71
3.2.5.1 化學藥劑與實驗器材 72
3.2.5.2 實驗步驟 74
3.3 品保與品管流程 77
3.4 氣膠污染來源與貢獻量推估 78
3.4.1 加強因子法 78
3.4.2 氯離子損失法 79
3.4.3 氣流軌跡分類法—Hysplit(Hybrid Single-Particle Lagrangian Integrated Trajectory)模式 85
第四章 結果與討論 89
4.1 氣膠質量濃度與粒徑分布特性 89
4.1.1 氣膠質量濃度基本特性與氣象因子 90
4.1.2 冷高壓對質量濃度的影響 92
4.1.3 氣流軌跡對質量濃度的影響 96
4.1.4 黃沙影響期間質量濃度變化特性 100
4.1.5 質量濃度粒徑分布特性 104
4.1.6 一次與二次氣膠估算 109
4.2 氣相污染物特性與指標 135
4.2.1 氣相污染物的傳輸現象與來源 135
4.2.2 氣相污染物與質量濃度的關係 142
4.3氣膠水溶性離子特性與指標 159
4.3.1氣膠水溶性離子基本特性 159
4.3.2 水溶性離子物種比例關係 166
4.3.3一次與二次氣膠物種特徵 173
4.4 氣膠碳成分特性與指標 188
4.4.1 氣膠碳成分基本特性 188
4.4.2 非冷高壓、冷高壓事件前後及冷高壓事件氣膠碳成分組成與特徵 192
4.4.3 相異氣流軌跡類型氣膠碳成分組成與特徵 196
4.4.4 非黃沙、黃沙時期及黃沙後高壓迴流氣膠碳成分組成與特徵 201
4.4.5 二次有機碳貢獻 205
4.5 黃沙時期氣膠特性 220
4.5.1 塵土微粒的混合型態與取代 220
4.5.2 沙塵期間氣膠結合型態 222
4.6 冷高壓時期有機氣膠特性 225
4.6.1 有機氣膠特性與優勢物種 225
4.6.2 有機氣膠污染來源類型 227
4.7 綜觀天氣系統與相異氣流軌跡綜合比較 237
4.8 高濃度事件解析 241
4.8.1 2004年9月高濃度事件 241
第五章 結論與建議 251
5.1 結論 251
5.2 建議 254
參考文獻 255
附錄二 2004年5月至2005年4月採樣期間逐時氣象資料 267
附錄三 臭氧篩選法 273
附錄四 物種比例分布圖 281
參考文獻 Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Van Grieken, R., Maenhaut,W., 1986. Internal mixtures of sea salt, silicates and excess sulfate in marine aerosols, Science. 232, 1620-1623.
Brook, J. R., Dann, T. F. and Rurnett, R. T., 1997. The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Lacations. Journal of the Air and Waste Management Association 47, 2-19.
Cao, J.J., Lee, S.C., Ho, K.F., Zhang, X.Y., Zou, S.C., Fung, K., Chow, J.C., Watson, J.G., 2003. Characteristic of carbonaceous aerosol on Pearl River Delta region, China during 2001 winter period.Atmospheric Environment 37, 1451–1460.
Chow, J. C., 1995. Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. J. Air & Waste Manage. Assoc 45, 320-382.
Chow, J. C., Watson, J. G., Fujuta, E. M., Lu, Z. and Lawson, D. R., 1994. Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study. Atmospheric Environment 28, 2061-2080.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chow, J.C., 1992. A neighborhood-scale Study of PM10 source contribution in rubidoux California. Atmospheric Environment 26A, 693-706.
Chung, Y. S. and Yoon, M. B., 1996. On the occurrence of yellow sand and atmospheric loadings. Atmospheric Environment 30, 2387-2397.
Colbeck, I. and Harrison, R. M., 1984. Ozone-econdary aerosol- visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang Y., 2004. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment 38, 3443-3452.
Gao, J.J., Lee, S.C., Ho, K.F., Zhaung, X.Y., Zou, S.C., Fung, K., Chow, J.C., Watson, J.G., 2003. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmospheric Environment 37, 1451-1460.
Gao, J., Rahn, K.A., Zhuang, G., 2004. A mechanism for the increase of pollution elements in dust storms in Beijing. Atmospheric Environment 38, 855-862.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Guo, J., Rahn, K. A., Zhuang, Guoshun., 2004. A mechanism for the increase of pollution elements in dust storms in Beijing. Atmospheric Environment 38, 855-862.
Harrison, R. M., Pio, C. A., 1983. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmospheric Environment 17,1733-1783.
Ho, K. F., Lee, S. C., Chan, Chak K., Yu, Jimmy. C., Chow, Judith. C. and Yao, X.H., 2003. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment 37, 31-39.
Huang, X. F., Hu, M., He, L. Y., Tang, X. Y., 2005. Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmospheric Environment 39, 2819-2827.
John, W., Wall, S. M., Ondo, J. L. and Winklmayr, W., 1990. Modes in the Size Distribution of Atmospheric Inorganic Aerosol. Atmospheric Environment 24A, 2349-2359.
Katsumi Satioh, Koichiro Sera, Koichiro Hirano, Tadashi Shirai,. 2002. Chemical characterization of particles in winter-night smog in Tokyo. Atmospheric Environment 36, 435-440.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles Ambient Air. Environmental Science and Technology 21, 105-110.
Kerminen, V.M., Pakkanen, T.A., Hillamo, R.E., 1997. Interactions between inorganic trace gases and supermicrometer particles at a coastal site. Atmospheric Environment 31, 2753-2765.
Kim, E., Hopke, P. K., Edgerton, E. S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.
Kim, B.G., Park, S.U., 2001. Transport and evolution of a winter-time Yellow sand observed in Korea. Atmospheric Environment 35, 3191-3201.
Kulkarni, M. R., Adiga, B. B., Kapoor, R. K. Shirvaikar, V. V., 1982. Sea salt in coastal air and its deposition on porcelain insulators. Journal of Applied Meteorology 21, 350-355.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T. and Korhonen, P. 1995. The Effect of HCl on Cloud Droplet Formation. J. Aerosol Sci. 26, 413-414.
Li, F. and Okada, K., 1999. Diffusion and modification of marine aerosol particles over the coastal areas in china: A case study using a single particle analysis. Journal of Atmospheric. Science 56, 241-248.
Lim, H.J., 2001, Semi-continuous aerosol carbon measurment: addressing atmospheric progress of local and global concern, Ph.D. Dissertation, The Graduate School-New Brunswick Rutgers, State University of New Jersey.
Mangelson, N. F., Lewis, L., Joseph,J. M., Cui, W., Machir, J., Williams, N. W., Eatough, D. J., Rees, L. B., Wilkerson, T. and Jensen, D. T., 1997.The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. AWMA 47, 167-175.
Mangelson, N. Lewis F., L., Joseph J. M., Cui W., Machir J., Williams N. W., Eatough D. J., Rees L. B., Wilkerson T. and Jensen D. T., 1997. The Contribution of Sulfate and Nitrate to Atmospheric Fine Particles During Winter Inversion Fogs in Cache Valley, Uath. Journal of the AWMA 47, 167-175.
Masaki, T., Hiroshi, O., Manabu, I., 2004. Characteristics of water-soluble components of Atmosphere Aerosols in Yokohama and Mt. Oyama, Japan from 1990 to 2001. Atmospheric Environment 38, 4701-4708.
Mehlmann, A. and Warneck, P., 1995. Atmospheric Gaseous HNO3, Particulate Nitrate, and Aerosol Size Distributions of Major Ionic Species at a Rural Site in Western Germany. Atmospheric Environment 29, 2359-2373.
Mori, I., Nishikawa, M., Tanimura, T., Quan, H., 2003. Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmospheric Environment 37, 4253-4263.
Moya, M., Castro, T., Zepeda, M., Baez, Armando., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
Ohta, S. and Okita, T., 1990. A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Pakkanen, T. A., 1996. Study of Formation of Coarse Particle Nitrate Aerosol. Atmospheric Environment 30, 2475-2482.
Pakkanen, T.A., Kerminen, V.M., Hillamo, R.E., Makinen, M., Makela, T., Virkkula, A., 1996. Distribution of nitrate over sea-salt and soil derived particles-implication from a field study. Journal of Atmospheric Chemistry 24, 189-205.
Pandis, S.N., Harley, R.A., Cass, G.R., Seinfeld, J.H., 1992. Secondary organic aerosol formation and transport. Atmospheric Environment 26A, 2269-2282.
Park, S.S., Kim, Y.J., Fung, K., 2001. Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, Korea. Atmospheric Environment 35, 657–665.
Pathak, R.K., Louie, P.K.K., Chan, C.K., 2004. Characteristics of aerosol acidityin Hong Kong. Atmospheric Environment 38, 2965-2974.
Rees, S.L., Robinson, A.L., Khlystov, A., Stanier, C.O., Pandis, S.N., 2004. Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. Atmospheric Environment 38, 3305-3318.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Russell, M., Allen, D.T., 2004. Seasonal and spatial trends in primary and secondary organic carbon concentrations in southeast Texas. Atmospheric Environment 38, 3225-3239.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric Chemistry and Physics from Air Pollution to Climate Change. Wiley Interscience, New York, pp. 529-541, 1030-1050, 1074-1190.
Seinfeld, J. H., Pandis, S. N., 1998. Mathematical model of atmospheric fine particle associated primary organic compound concentrations. Journal of Geophysical Research 101, 19379-19394.
Solomon, P. A. and Moyers J. L., 1984. Use of a High Volume Dichotomous Virtual Impactor to Estimate Light Extinction due to Carbon and Related Species in the Phoenix Haze. Science of the Total Environment 36, 169-175.
Song, C.H., Carmichael, G.R., 1999. The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport. Atmospheric Environment 33, 2208-2218.
Song, C.H., Maxwell-Meier, K., Weber, R.J., Kapustin, V., Clarke, A., 2005. Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight #6. Atmospheric Environment 39, 359-369.
Speizer, F. E., Studies of acid aerosols in six cities and in multi-city investigations: design issues. Environmental Health Perspectives 79, 61-67.
Strader, R., Lurmann, F., Pandis, S.N., 1999. Evaluation of secondary organic aerosol formation in winter.Atmospheric Environment 33, 4849–4863.
Takeuchi, M., Okochi, H., Igawa, M., 2004. Characteristics of water-soluble components of atmospheric aerosols in Yokohama and Mt. Oyama, Japan from 1990 to 2001. Atmospheric Environment 38, 4701-4708.
Turpin, B. J., and Huntzicker, J. J., 1991. Secondary Formation of Organic Aerosol in the Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentrations. Atmospheric Environment 25A, 207-215.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Lim, H., 2001. Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Science and Technology 35, 602-610.
Wai, K.M., Tanner, P.A., 2004. Wind-dependent sea salt aerosol in a Western Pacific coastal area. Atmospheric Environment 38, 1167-1171.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment 38, 1235-1246.
Watson, J.G., 1998. The science of fine particlate matter, workshop on sampling, regulation, and light scattering effects of PM2.5. Atmospheric Environment 25A, 1-14.
Watson, J. G., Chow, J. C., Lu, Z., Fujita, E. M., Lowenthal, D. H. and Lawson, D. R., 1994. Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study. Aerosol Sci. Technol 21, 1-36.
Watson, J. G., 1998. The Science of Fine Particlate Matter. Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5. 1-14.
Wu, P.M., Okada,K., 1994. Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmospheric Environment 28, 2053-2060.
Xavier Querol, Andrés Alastuey, Sergio Rodriguez, Felicià Plana, Carmen R. Ruiz, Nuria Cots, Guillem Massagué and Oriol Puig., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35, 6407-6419.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yao, X., Fang, M., Chan, C.K., 2003. The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmospheric Environment 37, 743-751.
Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
Yao, X., Fang, M., Chan, C.K., 2002. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099–2107.
Zhang, X.Y., Arimoto, R., An, Z., Chen, T., Zhang, G., Zhu, G., Wang, X., 1993. Atmospheric trace elements over source regions for chinese dust: concentrations, sources and atmospheric deposition on the loess plateau. Atmospheric Environment 27, 2051-2067.
Zhao, W., Hopke, P. K., 2004. Source Apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901-5910.
Zhung, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
王證權 (2001) 亞洲氣膠特性實驗—台灣北海岸春季氣膠化學特性,國立中央大學環境工程研究所碩士論文。
朱宏勳 (2004) 長程傳輸對北台灣大氣氣膠特性的影響,國立中央大學環境工程研究所碩士論文。
梁永志 (2003) 北台灣長程傳輸氣膠化學特性,國立中央大學環境工程研究所碩士論文。
秦若鈺 (2004) 大氣常見有機物分析及有機/無機混合氣膠含水特性之研究,國立中央大學環境工程研究所碩士論文。
彭啟明 (1994) 台灣北部地區混合層高度的觀測與模擬,國立中央大學大氣物理研究所碩士論文。
94年度「環保署 / 國科會空污防治科研合作計畫」期末報告,NSC-94-EPA-Z-008-003。
行政院環境保護署 (2003) 高污染區域大氣邊界層密集觀測及對污染物擴散之研究 期末報告,EPA-92-U1L1-02-103。
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明