![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:36 、訪客IP:3.145.165.217
姓名 王佩珊(Pel-Shan Wang) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 幾丁聚醣/硫酸軟骨素製成多孔性複合膜之物化性質探討與研究
(The Fundamental of Porous Chitosan/Chondroitin Sulfate Composite Membrane Research)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要的目的是以兩種天然高分子材料:幾丁聚醣(chitosan) 與硫酸軟骨素(chondroitin sulfate)做為模仿細胞外基質(extracellular matrix, ECM)的架構體,藉由聚電解質電荷反應並以冷凍乾燥法製成多孔性之複合膜,以做為組織工程支架(scaffold)上之應用。實驗中將幾丁聚醣/硫酸軟骨素以不同重量比例混合,並選用三種不同交聯型態的交聯劑(戊二醛、EDC/NHS及鈣離子)進行交聯以形成不同系列之複合膜,分別將針對其基本物化性質、生物體外相關實驗及結合生長因子於支架上之控制釋放行為能力來探討。
由SEM結果顯示,幾丁聚醣/硫酸軟骨素複合膜於交聯前與交聯後均呈立體交錯之多孔性結構,且交聯後複合膜孔洞有縮小的趨勢,孔洞直徑分佈大約在30~200μm。重量損失分析得知,經交聯之複合膜均較未交聯之幾丁聚醣/硫酸軟骨素複合膜可增加其穩定性,且以鈣離子交聯系列之複合膜為佳,相較於未交聯之複合膜可提升20%穩定性。酵素裂解實驗結果顯示,經交聯之複合膜均較未交聯之幾丁聚醣/硫酸軟骨素複合膜有較低之降解率,且於酵素溶液下均具有反應性。細胞毒性實驗結果顯示,未經交聯之幾丁聚醣/硫酸軟骨素複合膜不會對細胞產生任何毒性;經交聯之複合膜除了EDC/NHS交聯系列外,戊二醛及鈣離子交聯系列之複合膜均有明顯的細胞毒性。由b-FGF(basic Fibroblast Growth Factor)生長因子吸附結果顯示,除了經戊二醛交聯24小時之吸附率為68%外,其餘交聯與未交聯系列之幾丁聚醣/硫酸軟骨素複合膜對b-FGF吸附率均可達80%以上,且隨著高分子胺基的配位增加而增加其吸附量,隨著高分子陰電性的配位增加而降低對b-FGF吸附率。b-FGF釋放結果呈現,交聯與未交聯系列之幾丁聚醣/硫酸軟骨素複合膜均可維持7天以上釋放,且隨著b-FGF與聚陰電性官能基鍵結形式增加而增加其釋放量,而隨著b-FGF與胺基穩定鍵結形式的增加而降低b-FGF釋放。摘要(英) The purpose of this research is to study a porous composite membrane, which can be used in the scaffold of tissue engineering as imitation of extracellular matrix (ECM). The membranes of chitosan/chondroitin sulfate were prepared by polyelectrolytic reaction and freeze-drying methods. In this study different weight ratio of chitosan and chondroitin sulfate were blended and crosslinked with three different crosslinking reagents respectively (glutaraldehyde 、1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) and calcium ion) to form distinct composite membranes. The basic physical and chemical properties, in vitro assay and the control release behavior of growth factor in the scaffold were studied respectively in this study.
SEM results show that the composite membrane is porous both before and after crosslinking. The aperture of the membranes will decrease after crosslinking and the diameter of aperture distribute between 30 and 200μm. From the weight lost analysis crosslinking will increase the stability of the composites membrane. The stability of the membranes increased 20% after crosslinked by calcium ion. Weather the composite membranes crosslinked or not all shows that the membrane will be degraded in enzyme solution, but the degradation ratio of the crosslinked membrane is lower than that of the uncrosslinked one. Cell toxicity experiments show that uncrosslinked membranes are nontoxic to cell, but the crosslinked membranes were evidenced toxic to cell except the one crosslinked by EDC/NHS. The absorption ability of membranes to basic fibroblast growth factor (b-FGF) weather crosslinked by EDC/NHS, calcium ion or not is higher than 80% while the composite membranes crosslinked by glutaraldehyde for 24 hrs is only 68%. The absorption ability will increase as amine group increased and decrease as carboxyl and sulfinyl groups increased. The controlled released experiments show that the release of b-FGF can be last more than seven days both for crosslinked and uncrosslinked membrane. Weak bonding of b-FGF with carboxyl or sulfinyl groups increased the release amount of b-FGF while strong bonding of b-FGF with amine group decreased the b-FGF amount.關鍵字(中) ★ 硫酸軟骨素
★ 幾丁聚醣關鍵字(英) ★ Chondroitin Sulfate
★ Chitosan論文目次 目錄
中文摘要…………………………………………………………….….Ⅰ
英文摘要………………………………………………………………..Ⅲ
目錄……………………………………………………………………..Ⅴ
圖目錄…………………………………………...…………………..….Ⅷ
表目錄……………………………………………………………….…XII
符號說明………………………………………………………….......XIII
第一章 緒論…………………………………………………………......1
第二章 文獻回顧…………………………………………………..…....3
2.1 幾丁聚醣介紹………………………………………………...……..3
2.1.1 幾丁聚醣的製備……………………………………………..4
2.1.2 幾丁聚醣的物理與化學性質……………………………......4
2.1.3 幾丁聚醣於生醫材料上之特性與應用………………...…...6
2.1.3.1 幾丁聚醣受溶菌酶分解之特性………………….....7
2.1.3.2 幾丁聚醣與其他高分子之相容性………………….8
2.1.3.3 幾丁聚醣於組織工程上的應用………………...…11
2.2 硫酸軟骨素介紹……………………………………...……………11
2.2.1 硫酸軟骨素的類型……………………………...…….……12
2.2.2 硫酸軟骨素之特性…………………………………………15
2.2.3 硫酸軟骨素的分佈與生理功能……………………………15
2.2.4 硫酸軟骨素在生物醫學上的研究與應用…..…………......16
2.3 生長因子………………………………………………………...…17
2.3.1 鹼性纖維母細胞生長因子(b-FGF)………………...………18
第三章 實驗………………………………………………...………….20
3.1 實驗目的…………………………………………………………...20
3.2 實驗藥品………………………………………………………….. 20
3.3 實驗儀器設備…………………………………………………….. 21
3.4 實驗方法…………………………………………………...………23
3.4.1 膜材的製備………………………………………...……….23
3.4.1.1 ChI/ChS複合膜的製備……………………...……...23
3.4.1.2 GA交聯之ChI/ChS薄膜的製備…………………....25
3.4.1.3 EDC/NHS交聯之ChI/ChS薄膜的製備……...…….26
3.4.1.4 Ca離子交聯之ChI/ChS薄膜的製備……………….27
3.4.2 紅外線光譜分析(FTIR)實驗…………………...……….….28
3.4.3 X-ray光譜分析(XRD)實驗……………………………...…..28
3.4.4 掃描式電子顯微鏡(SEM)之結構型態觀察………………..28
3.4.5 穩定度實驗…………………………………………...….…29
3.4.6 元素分析(EA)實驗……………………………………....…29
3.4.7 感應耦合電漿光譜分析鈣含量………………...……….....29
3.4.8 體外酵素裂解(in vitro)實驗………………………...……...30
3.4.9 抗菌實驗……………………………………………………32
3.4.10 細胞毒性測試---MTT test…………...……………………33
3.4.11 生長因子吸附與釋放……………………………………..35
3.4.11.1 生長因子吸附………………………………........35
3.4.11.2 生長因子釋放……………………………...…….35
3.4.11.3 ELISA測試方法……………………………...…...36
第四章 結果與討論……………………..………………...…………...39
4.1 物理化學性質之探討……………...………………………………39
4.1.1 幾丁聚醣/硫酸軟骨素複合膜……………………...……....39
4.1.1.1 FTIR分析………………..…………………….…....39
4.1.1.2 XRD分析……………………………………...…....41
4.1.1.3 SEM結構型態觀察分析…………………………....41
4.1.1.4穩定度分析…………………………….…………...44
4.1.1.5 元素分析…………………………...…….………...44
4.1.2 交聯型之幾丁聚醣/硫酸軟骨素複合膜…………………...44
4.1.2.1 化學交聯(戊二醛或EDC/NHS)之複合膜……...…47
4.1.2.1a FTIR分析…………………………...…….47
4.1.2.1b XRD分析…………………………...…….51
4.1.2.1c SEM結構型態觀察分析…..…………..….51
4.1.2.1d 穩定度分析……………………………....51
4.1.2.1e 元素分析………………………………....56
4.1.2.2 鈣離子交聯之複合膜……………..…………….…61
4.1.2.2a SEM結構型態觀察分析……………….....61
4.1.2.2b 穩定度分析………………………...…….63
4.1.2.2c 感應耦合電漿光譜分析鈣含量…….… 63
4.2 生物體外試驗…………………………………...………...……….65
4.2.1 酵素裂解實驗分析………………………………………....65
4.2.2 抗菌性質…………………………………………......……..70
4.2.3 細胞毒性分析…………………………….……………...…70
4.3 生長因子控制釋放…………………………...………...………….72
第五章 結論………………………………………………...…….……76
參考文獻………………………………………………………...…...…78參考文獻 參考文獻
1. N. K. Mathur and C. K. Narang, J. Chem. Education, 11, 938-942, 1990.
2. S. Hirano, H. Seino, Y. Akiyama, and I. Nonake, Chitosan: a biocompatible material for oral and intervenous administration, in Progress in Biomedical Polymers, Plenum Press, New York, 283-290, 1990.
3. 林佳文、張曉婷、吳柏昇、林睿哲,化工-生醫材料專刊,第48卷第2期,民國90年.
4. S. B. Rao and C. P. Sharma, Journal of Biomedical Materials Research, 34, 21, 1997.
5. X. F. Liu, Y. L. Guan, D. Z. Yang, Z. Li, K. D. Yao, Journal of Applied Polymer Science, 79, 1324, 2001.
6. 簡永浩,幾丁聚醣之發酵製程與規模放大,國立清華大學化學工程研究所,碩士論文,民國89年6月.
7. 糜福龍,幾丁聚醣應用於藥物及輸系統之設計及研究,國立中央大學化學工程研究所,博士論文,民國86年4月
8. L. R. Berger and R. S. Wiser, Biochem. Biophys. Acta., 26, 517-521, 1957.
9. P. David, Y. Manssuy and S. Mark, Carbohydr. Res., 237, 325-332, 1992.
10. C. V. Claramma, T. Chandy, C. P. Sharma, Soc. Biomat., 11, 477, 1988.
11. T. Chandy and C. P. Sharma, J. Appli. Polym. Sci., 44, 2145, 1992.
12. Klokkevold PR, Vandemark L, Kenney EB, et al., Journal of Periodotol, 67: 1-170, 1997.
13. V. F. Sechriest, Y. J. Miao, C. Niyibizi, A. Westerhausenlarson, H. W. Matthew, C. H. Evans, F. H. Fu, J.K. Suh, J. Biomed. Mater. Res., 49, 4, 534-541, 1999.
14. J. M. Chupa, A. M. Foster, S. R. Sumner, S.V. Madihally, H. W. Matthew, Biomaterials, 21, 2315-22, 2000.
15. A. Chenite, C. Chaput, D. Wang. C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, A. Selmani, Biomaterials, 21, 2155-61, 2000.
16. E. D. Hay, Cell Biology of extracellular matrix, Plenum Press, 1991.
17. 王純怡,膠原蛋白基質結構及多醣類組成對於細胞移入之研究,國立台灣大學化學工程研究所,碩士論文,民國86年7月
18. 陳彥利,A型與C型硫酸軟骨素對老鼠血清膽固醇及骨生長之影響.,國立台灣海洋大學水產食品科學系,碩士論文,民國85年6月
19. J. G. Beeley, Glycoprotein and proteoglycan techniques, Laboratory techniques in biochemistry and molecular biology , 16, Elsevier Science, New York, 1985.
20. M. Delehedde, M. Lyon, J Mammary Gland Biol Neoplasia, 6, 253-73 , 2001.
21. A. Ganza-Gonzalez, S. Igea-Anguiano, F. J. Otero-Espinar, B. Mendez, Euro J Pharm Biopharm, 48, 149, 1999.
22. J. S. Pieper, A. Oosterhof, P. J. Dijkstra, J. H. Veerkamp, van T. H. Kuppevelt, Biomaterials, 20, 847, 1999.
23. M. M. Rasulov, M. V. Elikaya, A. G. Zabozlaer, I. G. Kuznetsov, and M. G. Voronkov, Bull. Exp. Biol. Med., 116, 1329-1331,1993.
24. S. T. Ma, T. M. Zhung, N. Li, and L. L. Xu, Invest., 50, 1712, 1993.
25. M. F. Scully, V. Ellis, N. Seno, and V. V. Kakkar, Biochem. Biophys. Res. Commun., 137, 15-22, 1986.
26. J. H. Lass, W. J. Rhinhart, D. L. Skelnik, W. E. Bruner, R. P. Shockley, J. Y. Park, D. L. Hom, R. L. Lindstrom, Ophthalmology, 97, 96-103, 1990.
27. M. Shinmei, S. Miyauchi, A. Machida, and K. Miyazaki, Arthritis Rheum., 35 (11), 1304-1308, 1992.
28. 李漢傑、李偉華、杜炎昌, 國防醫學,第12卷第5期,民國80年.
29. C. Basilico, D. Moscatelli, ADV.canncer. res. 59: 115-165, 1992.
30. V. Rider, D. L. Carlone, R. T. Foster, J. Endocrinol. 154: 75-84, 1997.
31. S. M. Schwartz, L. J. Liaw, Cardiovasc. Pharmacol. 21: S31-S49, 1993.
32. A. Baird, Curr. Opin. Neurobiol. 4: 78-86, 1994.
33. K. Unsicker, S. Engel, C. Hamm, G. Ludecke, C. Meier, J. Renzing, H. G. Terbrack, K. Flanders, Anat. Anz. 174: 405-407, 1992.
34. J. M. McAvoy, G. C. Chamberlain, R. V. DeLongh, N. A. Richardson, F. J. Lovicu, Ann. NY. Acad. Sci. 638: 256-274, 1991.
35. B. B. Riley, M. P. Savage, B. K. Simandl, B. B. Olwin, J. F. Fallon, Development 118: 95-104, 1993.
36. F. J. Fallon, A. Lopez, , M. A. Ros, M. P. Savage, B. B. Olwin, B. K. Simandl, Science 264: 104-107, 1994.
37. 曾國輝編譯,大學生物化學(上),台北市,藝軒圖書出版社,第七章:135-154,1993.
38. K. J. Liu, A. Pervin and R. J. Linha, Carbohydrate Research, 244, 369, 1993.
39. F. Denizot, R. Lang, J. Immunol. Methods, 89: 271, 1986.
40. L. H. H. Olde Damink, P. J. Dijkstra, M. J. Luyn, van. A., P. B. van. Wachem, P. Nieuwenhuis, J. Feijen, Biomaterials, 17, 765-773, 1996.
41. T. Tanigawa, Y. Tanaka, H. Sashiwa, H. Saimoto, Y.Shigemasa, Elsevier Applied Science, London and New York, 206-215, 1992.
42. G. J.Tsai, W.H. Su,. J. Food Prot., 62, 239-243, 1999.指導教授 徐新興(Shin-Shing Shyu) 審核日期 2003-6-27 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare