![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:219 、訪客IP:3.145.116.193
姓名 房哲名(Che-Ming Fang) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 利用耗散粒子動力學探討星形高分子溶液的滲透壓及維里係數
(Osmotic pressure and virial coefficients of star polymer solutions : dissipative particle dynamics)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本篇論文主要以一種介觀尺度下的模擬方法-分散粒子動力學(
Dissipative Particle Dynamics )來探討於good solvent中線性與星形高分子的滲透壓、第二維里係數( second virial coefficient, B2 )、第三維里係數( third virial coefficient, B3 )變化以及證明DPD模擬於滲透壓實驗的可行性。
本文利用半透膜將系統分為兩部份針對稀薄( dilute )溶液及半稀薄( semi-dilute )溶液兩種溶液之滲透壓進行討論。由模擬結果可得,線性高分子在稀薄溶液中,B2、迴旋半徑(radius of gyration, Rg)的關係式 ;在半稀薄溶液中,Π與Φ的關係式Π~Φ2.7,由於軟球模型之因此值大於理論值9/4。對星形高分子而言,於稀薄溶液中,一樣遵守 關係式;在半稀薄溶液中,Π~λΦα。λ與α值與手臂數有關但與手臂長度無關。當手臂數增加,α值會由2.70增加至3.07,這個結果與實驗結果吻合。摘要(英) The osmotic pressure Π and virial coefficients ( B2 and B3 ) of linear and star polymers in good solvents are studied by dissipative particle dynamics simulations.
The dependence of the osmotic pressure on the concentration c is directly caculated by considering two reservoirs separated by a semi-
permeable, fictitious membrane. For linear polymers with chain length N, our simulation results confirm the scaling relations that B2 ~ N3ν in the dilute regime and Π ~ c2.70 in the semi-dilute regime. The exponent is greater than 9/4 due to the nature of soft beads. For star polymers, the scaling relations become B2 ~ Rg3 in dilute regime and Π λcα in semi-dilute regime. Both the prefactor λ and exponent α vary with the arm number but is independent of the arm length. As the arm number is increased, the exponent may rise from 2.7 to 3.07, which is qualitatively consistent with the experimental result.關鍵字(中) ★ 耗散粒子動力學
★ 滲透壓
★ 維里係數關鍵字(英) ★ osmotic pressure
★ scaling law
★ DPD
★ virial coefficient論文目次 摘要 ………………………………………………………...……...…I
Aabstract …………………………………………………...……...…II
致謝 ………………………………………………………...….....…III
目錄 …………………………………………………………..……..IV
圖目錄 …………………………………………………………...….VI
表目錄 ……………………………………………………...…....…VII
第一章 緒論 …………………………………………………..……1
第二章 理論基礎 ……………………………………………..……3
2-1 介觀尺度模擬簡介 ………………………………………….…3
2-2 週期性邊界條件(Periodic Boundary Condition ) ……………5
2-3 分散粒子動力學(DPD)簡介及理論 ……………………..…..7
2-3-1 移動方程式(Equations of motion) ……………………..8
2-3-2長度、速度、時間的尺度(Scaling of length, velocity and
time) ……………………………………………..……12
2-3-3 積分法求解(Integration scheme) ……………………14
2-3-4 噪訊和時間尺度(Noise and Timestep) …………...…15
2-3-5 斥力參數的選擇(Choosing the repulsion parameters) ...16
2-3-6 Flory-Huggins Theory …………………………………..18
第三章 文獻回顧 …………………………………………………22
3-1 滲透壓理論 ………….………………………………....…..22
3-2 Good Solvent下溶液的性質表現 ………………..…...……25
3-3 尺度理論(Scaling Theory) ………………………………..…27
3-3-1稀釋範圍(Dilute regime) ……………..……………..…27
3-3-2半稀釋範圍(semi-dilute regime) …………..………..…28
3-4無因次維里比率(dimensionless virial ratio, g) …..……..…30
3-5 模擬法求滲透壓 …………………………………………...31
第四章 模擬系統設定 ……………………………………………33
第五章 結果與討論 ………………………………………………38
5-1線性高分子的探討及DPD模擬的驗證 …………………...38
5-2星形高分子於水溶液的行為探討 ………………………....46
第六章 結論 …………………………………………...………….59
參考文獻 …………………………………………………...……….60參考文獻 1. A. Evilevitch, , L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, Osmotic pressure inhibition of DNA ejection from phage, PNAS 100, 9292, 2003.
2. P. J. Hoogerbrugge and J. M. V. A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett. 19, 155, 1992.
3. P. Español and P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhys. Lett. 30, 191, 1995.
4. M. P. Allan & D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
5. R. D. Groot and T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, J. Chem. Phys. 108, 8713, 1998.
6. R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107, 4423, 1997.
7. S. C. Wang, C. K. Wang, F. M. Chang and H. K. Tsao, Second Virial Coefficients of Poly(ethylene glycol) in Aqueous Solutions at Freezing Point, Macromolecules 35, 9551, 2002.
8. P. Flory, Principle of Polymer Chemistry, Cornell University Press: Ithaca, NY, 1971; Chapter XII.
9. De Gennes, P.-G. Scaling Concepts in Polymer Physics, Cornell University Press: Ithaca, NY, 1993; Chapter III.
10. Y. M. Wei, Z. L. Xu, X. T. Yang and H. L. Liu, Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process, Desalination 192, 91, 2006.
11. G, Merkle, W. Burchard, P. Lutz, Karl F. Freed’ and J. Gao, Osmotic Pressure of Linear, Star, and Ring Polymers in Semidilute Solution. A Comparison between Experiment and Theory, Macromolecules 26, 2736, 1993.
12. J. Roovers, Paul M. Toporowski and J. Douglas, Thermodynamic Properties of Dilute and Semidilute Solutions of Regular Star Polymerst, Macromolecules 28, 7064, 1995.
13. K. Ohno, K. Shida, M. Kimura, and Y. Kawazoe, Monte Carlo analysis of the osmotic pressure of athermal polymer solutions in dilutr and semi-dilute regimes,Computational and Theoretical Polymer Science 10, 281, 2000.
14. E. Flikkema and G. Brinke,Osmotic pressure of ring polymer solutions : A Monte Carlo study, Journal of Chemical Physics 113, 11393, 2000.
15. J. B. Gibson, K. Chen and S. Chynoweth, Simulation of Particle Adsorption onto a Polymer-Coated Surface Using the Dissipative Particle Dynamics Method, J. Colloid Interface Sci. 206, 464, 1998
16. A. M. Altenhoff, J. H. Walther, P. Koumoutsakos, A stochastic boundary forcing for dissipative particle dynamics, Journal of Computational Physics 225, 1125, 2007.指導教授 曹恒光(Heng-Kwong Tsao) 審核日期 2008-7-3 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare