博碩士論文 100322027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.117.240.120
姓名 曾維宏(Wei-hung Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以動態離心模型試驗模擬煤灰地盤之受震反應
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 砂土中模型基樁之單向反覆軸向載重試驗
★ 邊坡穩定分析方法之不確定性★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 土壤液化引致地盤永久位移之研究
★ 台北盆地地盤放大特性之研究★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 水力回填煤灰之動態特性
★ 沉箱碼頭受震反應及側向位移分析★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究由林口火力發電場之灰塘採集了重模試體所須土樣,以大型壓密儀進行飽和煤灰試體之製作,並設計了不同煤灰地盤厚度(9m、14m)及砂樁改良模型,利用中央大學地工離心機繞行至50g後進行受振試驗,並在試體內部按不同深度分別埋置加速度計、孔隙水壓計以及架設垂直向之線性差動變壓器,以觀察煤灰地盤受振後液化之動態反應。

經研究結果顯示:(1) 土壤未達到液化狀態時,其加速度振幅會隨土層深度越淺而有所放大,且小振動具有較高的放大倍率。土壤液化後由於剪力波無法向上傳遞,因為液化土層中的加速度振幅會呈衰減的趨勢;(2) 經由加速度歷時的對照,液化振動事件時未改良煤灰層之加速度振幅從第一個週期後開始衰減。砂樁改良組的煤灰層保留了前二個週期的完整波型,顯示出經改良煤灰土層之抗液化能力略高於未改良煤灰土層;(3) 綜合加速度與超額孔隙水壓比歷時,未改良煤灰層之液化深度達到8.5m,且超額孔隙水壓激發後所需的消散時間極長。而經過砂樁改良的煤灰層之液化深度同樣達到8.5m,但振動結束後水壓便開始迅速消散,顯示設置砂樁有利於煤灰層的排水。
摘要(英) In this research, series of dynamic centrifuge tests were performed to investigate the seismic behavior of liquefiable ash ground with different configuration. The ash samples were collected from the ash pond of thermal power plant in Linkou and made into consolidation samples. Tested models are divided into two groups according to the thickness of ash ground. All the models were installed the accelerometers, pore water pressure transducers and linear variable differential transformers (LVDT) to observe the seismic response of ash ground during and after soil liquefaction.

The test results showed: (1) the acceleration amplified from the base of soil stratum to the top while soil was non-liquefaction. On the other hand, the liquefied soil layer obstructs the shear wave propagation causing the decrease of acceleration. (2) The results of acceleration history showed that ash ground with sand pile improvement have slightly higher liquefaction resistance than unimproved ash ground. (3) The dissipation time of excess pore water pressure of liquefaction ash ground is very long. Instead, the excess pore water pressure of ash ground with sand pile improvement dissipated immediately after shaking.
關鍵字(中) ★ 煤灰地盤
★ 土壤液化
★ 砂樁改良
★ 超額孔隙水壓
★ 地工離心機
關鍵字(英) ★ ash ground
★ soil liquefaction
★ excess pore water pressure
★ centrifuge test
論文目次 摘要.................................................................................................................. i
ABSTRACT....................................................................................................ii
誌謝................................................................................................................iii
誌謝................................................................................................................ iv
目錄................................................................................................................. v
表目錄..........................................................................................................viii
圖目錄............................................................................................................. x
第 1 章 緒論................................................................................................... 1
1-1 研究動機與目的 ............................................................................. 1
1-2 研究方法.......................................................................................... 1
1-3 論文架構.......................................................................................... 2
第 2 章 文獻回顧........................................................................................... 2
2-1 土壤液化.......................................................................................... 2
2-2 離心模型原理 ................................................................................. 3
2-2-1 離心模型之基本相似律...................................................... 4
2-3 試驗用黏滯流體 ............................................................................. 6
2-4 煤灰地盤相關研究 ......................................................................... 7
2-4-1 煤灰性質對液化阻抗的影響.............................................. 7
2-4-2 擠壓砂樁工法改良.............................................................. 8
2-4-3 水力回填土層之特性.......................................................... 9
第 3 章 試驗方法與試驗設備..................................................................... 15
3-1 試驗方法........................................................................................ 15vi
3-2 試驗土樣及基本性質 ................................................................... 15
3-3 試驗議器與相關設備 ................................................................... 16
3-3-1 地工離心機........................................................................ 16
3-3-2 振動台與資料擷取系統.................................................... 16
3-3-3 大型壓密儀........................................................................ 17
3-3-4 U 型襯墊箱......................................................................... 17
3-3-5 固壁式試驗箱.................................................................... 18
3-3-6 各式量測儀器.................................................................... 18
3-4 試驗準備步驟與流程 ................................................................... 19
3-4-1 U 型襯墊箱組裝................................................................. 19
3-4-2 大型壓密箱組裝與重模試體製作.................................... 19
3-4-3 固壁式試驗箱組裝與量測儀器安裝................................ 20
3-4-4 回填覆土層與改良砂樁施作............................................ 21
3-4-5 離心機運轉前置作業與振動試驗.................................... 21
第 4 章 試驗結果與分析............................................................................. 41
4-1 試驗規劃........................................................................................ 41
4-2 試驗內容........................................................................................ 41
4-3 輸入振動........................................................................................ 43
4-4 升 g 過程變化 ............................................................................... 43
4-4-1 孔隙水壓升 g 變化............................................................ 43
4-4-2 升 g 時垂直沉陷量變化.................................................... 44
4-5 加速度歷時比較 ........................................................................... 45
4-5-1 9m 厚煤灰層之加速度歷時............................................... 45
4-5-2 14m 厚煤灰層之加速度歷時............................................. 48vii
4-6 超額孔隙水壓歷時比較 ............................................................... 51
4-6-1 9m 厚煤灰層之超額孔隙水壓歷時................................... 52
4-6-2 14m 厚煤灰層之超額孔隙水壓歷時................................. 54
4-7 土層沉陷歷時比較 ....................................................................... 56
4-7-1 9m 厚煤灰層之沉陷歷時................................................... 56
4-7-2 14m 厚煤灰層之沉陷歷時................................................. 57
4-7-3 沉陷量歷時小結................................................................ 59
第 5 章 結論與建議................................................................................... 121
5-1 結論.............................................................................................. 121
5-2 建議.............................................................................................. 123
參考文獻..................................................................................................... 124
參考文獻 1. Stewart, D.P., Chen, Y,R., and Kutter, B.L., “Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models,” Geotechnical Testing Journal, Vol. 21, No. 4, pp. 365-369 (1998)
2. Sharp, M.K., Dobry, R., and Abdoun T.H., “Liquefaction Centrifuge Modeling of Sands of Different Permeability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, pp. 1083-1091 (2003)
3. Jakka, R.S., Datta, M., and Ramana, G.V., “Liquefaction behaviour of loose and compacted pond ash,” Soil Dynamics and Earthquake Engineering Vol. 30, No. 7, pp. 580-590 (2010)
4. Jakka, R.S., Datta, M., and Ramana, G.V., “Shear behaviour of loose and compacted pond ash,” Geotechnical and Geological Engineering Vol. 28, No. 6, pp. 763-778 (2010)
5. Weber, T.M., Laue, J., and Springman, S.M., “Centrifuge modelling of sand compaction piles in soft clay under embankment load,” Institute for Geotechnical Engineering, ETH Zurich, Switzerland(2010)
6. 行政院公共工程委員會,公共工程飛灰混凝土使用手冊,行政院公共工程委員會(1999)
7. 黃俊鴻、葉品毅、呂昱達、林茂榮、郭麗雯,「台中火力電廠灰塘擠壓砂樁工法改良成效評估」,地工技術,第113期,第29-40頁 (2010)
8. 游家豪,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,碩士論文,國立成功大學土木工程學系,台南(2009)。
9. 陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
10. 陳安邦,「既存隧道襯砌彎矩受鄰近水平新挖隧道的影響」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
11. 林資凱,「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程學系,中壢(2001)。
12. 李淑芬,「水力回填煤灰之大地工程性質」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
13. 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
14. 楊子霈,「以動態離心模型試驗模擬不同型式基礎建築物於液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
指導教授 黃俊鴻、李崇正(Jin-Hung Hwang Chung-Jung Lee) 審核日期 2014-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明