參考文獻 |
1. Jana Jass, S.S., andJames Walker, Rodney M. Donlan, Problems of Biofilms Associated with Medical Devices and Implants. 2003, John Wiley & Sons.
2. Vertes, A., V. Hitchins, and K.S. Phillips, Analytical Challenges of Microbial Biofilms on Medical Devices. Analytical Chemistry, 2012. 84(9): p. 3858-3866.
3. Bikramjit Basu, D.S.K.a.K., Fundamentals of Biomaterials and Biocompatibility. 2009, The American Ceramic Society.
4. Chen, S.F., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
5. Edwards, A.K.D.a.S.F., The Effect of Excluded Volume on Polymer Dispersant Action. Proc. R. Soc. Lond. A, 1975. 343: p. 427-442.
6. Hermans, J., Excluded‐volume theory of polymer–protein interactions based on polymer chain statistics. J. Chem. Phys., 1982. 77: p. 2193-2203.
7. A Abuchowski, T.v.E., N C Palczuk and F F Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. The Journal of Biological Chemistry, 1977. 252: p. 3578-3581.
8. Han, S.K., C.; Kwon, D., THERMAL-DEGRADATION OF POLY (ETHYLENEGLYCOL). Polym. Degrad. Stabil., 1995. 47(2): p. 203-208.
9. Han, S., C. Kim, and D. Kwon, Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer, 1997. 38(2): p. 317-323.
10. Li, L.Y., S.F. Chen, and S.Y. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science-Polymer Edition, 2007. 18(11): p. 1415-1427.
11. Iwasaki, Y. and K. Ishihara, Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry, 2005. 381(3): p. 534-546.
12. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000. 18(3-4): p. 261-275.
13. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
14. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
15. Ishihara, K., et al., HEMOCOMPATIBILITY OF HUMAN WHOLE-BLOOD ON POLYMERS WITH A PHOSPHOLIPID POLAR GROUP AND ITS MECHANISM. Journal of Biomedical Materials Research, 1992. 26(12): p. 1543-1552.
16. Jiang, S.Y. and Z.Q. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p. 920-932.
17. Chang, Y., et al., Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling. Langmuir, 2010. 26(5): p. 3522-3530.
18. Chang, Y., et al., Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials, 2013. 23(9): p. 1100-1110.
19. Li, Y.T., et al., Simple and Robust Approach for Passivating and Functionalizing Surfaces for Use in Complex Media. Langmuir, 2012. 28(25): p. 9707-9713.
20. Gao, C.L., et al., Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 2010. 31(7): p. 1486-1492.
21. Shen, C.H. and J.C. Lin, Improving the Surface Biocompatibility with the Use of Mixed Zwitterionic Self-Assembled Mono layers Prepared by a Proper Solvent. Langmuir, 2011. 27(11): p. 7091-7098.
22. Shen, C.H. and J.C. Lin, Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids and Surfaces B-Biointerfaces, 2013. 101: p. 376-383.
23. Ralph G. Nuzzo , D.L.A., Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 1983. 105(13): p. 4481–4483.
24. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly. 1991: ACADEMIC PressINC, 1991.
25. Hung, C., J., Surface ener Engineering 2013.
26. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1169.
27. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430.
28. Lee, H., N.F. Scherer, and P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(35): p. 12999-13003.
29. Waite, J.H. and X.X. Qin, Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry, 2001. 40(9): p. 2887-2893.
30. Chien, C.Y. and W.B. Tsai, Poly(dopamine)-Assisted Immobilization of Arg-Gly-Asp Peptides, Hydroxyapatite, and Bone Morphogenic Protein-2 on Titanium to Improve the Osteogenesis of Bone Marrow Stem Cells. Acs Applied Materials & Interfaces, 2013. 5(15): p. 6975-6983.
31. McCloskey, B.D., et al., Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer, 2010. 51(15): p. 3472-3485.
32. Ou, J.F., et al., Construction and study on corrosion protective property of polydopamine-based 3-layer organic coatings on aluminum substrate. Progress in Organic Coatings, 2010. 68(3): p. 244-247.
33. Ku, S.H. and C.B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials, 2010. 31(36): p. 9431-9437.
34. Ye, Q., F. Zhou, and W.M. Liu, Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 2011. 40(7): p. 4244-4258.
35. Zurcher, S., et al., Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. Journal of the American Chemical Society, 2006. 128(4): p. 1064-1065.
36. Amstad, E., et al., Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups. Nano Letters, 2009. 9(12): p. 4042-4048.
37. Fan, X.W., et al., Biomimetic anchor for surface-initiated polymerization from metal substrates. Journal of the American Chemical Society, 2005. 127(45): p. 15843-15847.
38. Amstad, E., et al., Surface Functionalization of Single Superparamagnetic Iron Oxide Nanoparticles for Targeted Magnetic Resonance Imaging. Small, 2009. 5(11): p. 1334-1342.
39. Malisova, B., et al., Poly(ethylene glycol) Adlayers Immobilized to Metal Oxide Substrates Through Catechol Derivatives: Influence of Assembly Conditions on Formation and Stability. Langmuir, 2010. 26(6): p. 4018-4026.
40. Pop-Georgievski, O., et al., Nonfouling Poly(ethylene oxide) Layers End-Tethered to Polydopamine. Langmuir, 2012. 28(40): p. 14273-14283.
41. Moser, J., et al., SURFACE COMPLEXATION OF COLLOIDAL SEMICONDUCTORS STRONGLY ENHANCES INTERFACIAL ELECTRON-TRANSFER RATES. Langmuir, 1991. 7(12): p. 3012-3018.
42. Rajh, T., et al., Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. Journal of Physical Chemistry B, 2002. 106(41): p. 10543-10552.
43. Dalsin, J.L., et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir, 2005. 21(2): p. 640-646.
44. Rodenstein, M., et al., Fabricating Chemical Gradients on Oxide Surfaces by Means of Fluorinated, Catechol-Based, Self-Assembled Monolayers. Langmuir, 2010. 26(21): p. 16211-16220.
45. Li, S.C., et al., Hydrogen Bonding Controls the Dynamics of Catechol Adsorbed on a TiO2(110) Surface. Science, 2010. 328(5980): p. 882-884.
46. Yu, B., et al., Robust polydopamine nano/microcapsules and their loading and release behavior. Chemical Communications, 2009(44): p. 6789-6791.
47. Wei, H., et al., Compact Zwitterion-Coated Iron Oxide Nanoparticles for Biological Applications. Nano Letters, 2012. 12(1): p. 22-25.
48. Zhou, Z.J., et al., Engineered Iron-Oxide-Based Nanoparticles as Enhanced T-1 Contrast Agents for Efficient Tumor Imaging. Acs Nano, 2013. 7(4): p. 3287-3296.
49. Wei, H., et al., Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging. Integrative Biology, 2013. 5(1): p. 108-114.
50. Walbert, S., W. Pfleiderer, and U.E. Steiner, Photolabile protecting groups for nucleosides: Mechanistic studies of the 2-(2-nitrophenyl)ethyl group. Helvetica Chimica Acta, 2001. 84(6): p. 1601-1611.
51. Zahid Shafiq, J.C., Lourdes Pastor-Prez, Vernica San Miguel, Radu A. Gropeanu, and a.A.n.d.C. Cristina Serrano, Bioinspired Underwater Bonding and Debonding on Demand. Angew. Chem. Int. Ed. , 2012. 51: p. 4332 –4335.
52. Keller, C.A. and B. Kasemo, Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophysical Journal, 1998. 75(3): p. 1397-1402.
53. Keller, C.A., et al., Formation of supported membranes from vesicles. Physical Review Letters, 2000. 84(23): p. 5443-5446.
54. Huang, C.J., et al., Type I Collagen-Functionalized Supported Lipid Bilayer as a Cell Culture Platform. Biomacromolecules, 2010. 11(5): p. 1231-1240.
55. Moulder, J.F.S., W .F.; Sobol, P. E.; Bomben, K. D. , Handbook of x-ray photoelectron spectroscopy. 1992, Boca Raton.
56. Yang, W.J., et al., Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polymer Chemistry, 2013. 4(10): p. 3105-3115.
57. Ivashenko, O., et al., Rapid reduction of self-assembled monolayers of a disulfide terminated para-nitrophenyl alkyl ester on roughened Au surfaces during XPS measurements. Chemical Physics Letters, 2013. 559: p. 76-81.
58. Bernsmann, F., et al., Dopamine-Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution. Langmuir, 2011. 27(6): p. 2819-2825.
59. Bernsmann, F., et al., Characterization of Dopamine-Melanin Growth on Silicon Oxide. Journal of Physical Chemistry C, 2009. 113(19): p. 8234-8242.
60. Holten-Andersen, N., et al., pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(7): p. 2651-2655.
61. Chen, Q., et al., Molecules Immobilization in Titania Nanotubes: A Solid-State NMR and Computational Chemistry Study. Journal of Physical Chemistry C, 2008. 112(44): p. 17331-17335.
62. Anderson, T.H., et al., The Contribution of DOPA to Substrate-Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films. Advanced Functional Materials, 2010. 20(23): p. 4196-4205.
63. Yu, J., et al., Adhesion of Mussel Foot Protein-3 to TiO2 Surfaces: the Effect of pH. Biomacromolecules, 2013. 14(4): p. 1072-1077.
64. Wei, W., et al., Hydrophobic Enhancement of Dopa-Mediated Adhesion in a Mussel Foot Protein. Journal of the American Chemical Society, 2013. 135(1): p. 377-383.
65. Goda, T., et al., Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform. Chemical Communications, 2013. 49(77): p. 8683-8685.
66. Huang, C.J.W., L. C.; Liu, C. Y.; Chiang, A. S. T.; Chang, Y. C., Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases, 2014. 9(2).
67. Emmenegger, C.R.B., E.; Riedel, T.; Sedlakova, Z.; Houska, M.; Alles, A. B., Interaction of Blood Plasma with Antifouling Surfaces. Langmuir, 2009. 25(11): p. 6328-6333.
68. Lee, D. and S. Yang, Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators B-Chemical, 2012. 162(1): p. 425-434.
69. Chen, S.F., et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
70. Shunsuke Chatani, C.J.K., Christopher N. Bowman, The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem., 2014. 5: p. 2187-2201.
|