博碩士論文 101331002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.17.164.48
姓名 王琳琄(Lin-Chuan Wang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 新型生物啟發兩性離子多巴胺分子與其抗污及光裂解性能之研究
(Novel Bio-Inspired Zwitterion Dopamine Molecule for Anti-Biofouling and Photocleavable Properties)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 使用合成的生物材料作為血液接觸裝置,通常伴隨著蛋白質,細胞和細菌等大量非特異性吸附。這些最終可能會在臨床醫療上引起不良的致病性問題,如血栓的形成以及生物材料相關的感染問題。在這項研究中,我們採用貽貝啟發的鄰苯二酚衍生物分別為兩性離子多巴胺磺基甜菜鹼(sulfobetaine dopamine, SB-DA)以及兩性離子硝基多巴胺磺基甜菜鹼(sulfobetaine nitrodopamine, SB-nDA)作為二氧化鈦的修飾表面配體,其中,兩性離子硝基多巴胺磺基甜菜鹼(SB-nDA)提供一個光觸發的切換性能。從電化學研究顯示, SB-DA 在 pH3 的環境下具有完全可逆的氧化還原行為,而在 pH 8 環境下是不可逆的。接觸角測角儀和X射線光電子能譜(x-ray photoelectron spectroscopy, XPS)用來了解 pH值置換對於鄰苯二酚衍生物與二氧化鈦基板之間鍵結的變化,以及了解兩性離子硝基多巴胺磺基甜菜鹼(SB-nDA)對於光裂解的構型變化。另外, SB-DA 與 SB-nDA 的防污性能將透過蛋白質和細菌溶液進行驗證。由石英晶體微量天平(quartz crystal microbalance with dissipation, QCM-D)和螢光顯微鏡觀察。試驗表明,透過 pH 置換方法所製備的 SB-DA 薄膜具有最佳抵抗 BSA 和細菌等非特異性吸附的能力。這一發現支持以下論點;透過 pH 值置換製備成高表面密度的兩性離子多巴胺分子自組裝膜,並且首次證明了兩性離子多巴胺分子自組裝的防污性能,其與傳統的硫醇基兩性離子自組裝膜是相媲美的。在此,我們不僅透過一種簡便和有效的辦法製備了兩性離子多巴胺分子自組裝膜,並展示其有效防污性能,也提供深入了解鄰苯二酚衍生物的綁定機制,讓其衍生物能夠充分利用在表面修飾上,另外,也提出一個光觸發分子,其產生表面功能性質的變化,做為可調控分子在納米醫學應用,如標靶分子影像和藥物輸送,具有相當大的發展潛力。
摘要(英) Use of synthetic biomaterials as blood-contacting devices typically accompanies considerable nonspecific adsorption of proteins, cells and bacteria. These may eventually induce adverse pathogenic problems in clinic practices, such as thrombosis and biomaterials-associated infection. An effective surface coating for medical devices has been pursued to repel nonspecific adsorption from surfaces. In this study, we employed mussel-inspired adhesive dopamine molecule with zwitterionic sulfobetaine residue (SB-DA) and catecholic assembly possessing zwitterionic and photocleavable (sulfobetaine nitrodopamine, SB-nDA) as a surface ligand for modification of TiO2. The electrochemical study shows that the SB-DA exhibits fully reversible reduction-oxidation behavior at pH 3, whereas irreversible at pH 8. The contact angle goniometer, and x-ray photoelectron spectroscopy (XPS) were utilized to explore the surface hydration, chemical states and bonding mechanism of SB-DA, indicating that the binding between catecholic hydroxyl group of SB-DA and TiO2 converts from hydrogen bonds to bidentate bonds upon the pH transition from pH 3 to 8. In order to examine the antifouling properties of SB-DA SAMs, the modified substrates were brought to contact with a bovine serum albumin (BSA) solution monitored using a quartz crystal microbalance with dissipation (QCM-D) sensor and bacteria solutions observed under fluorescence optical microscope. The fouling tests show the sample prepared via the pH transition approach enables the resisting of BSA and bacterial nonspecific adsorption to the best extent as the full coverage of SB-DA films. The findings support the pH-modulated assembly of SB-DA in preparation, and for the first time demonstrate the antifouling properties of the SB-DA SAM comparable with traditional thiol-based zwitterionic SAMs. This strategy was applied to the SB-nDA .The success of modification with catechol derivatives opens an avenue to developing a bio-inspired surface chemistry, and allows uses for a wide spectrum of bio-applications. In addition SB-nDA indeed occur in response to light cracking, resulting in changes of functional characters. The application development potential of Nanomedicine
關鍵字(中) ★ 兩性離子
★ 自組裝
★ 光裂解
★ 抗汙
關鍵字(英)
論文目次 目錄
中文摘要 iv
Abstract vi
致謝 viii
圖目錄 xii
表目錄 xiii
第一章 緒論 1
第二章 文獻回顧 3
2-1 醫療植入物之生物汙染 3
2-2 抗生物汙染之親水塗層 4
2-2-1 聚乙二醇材料 4
2-2-2 雙離子材料 5
2-3 自組裝膜之介紹 8
2-4 鄰苯二酚衍生物應用於表面修飾 11
2-4-1 貽貝蛋白 11
2-4-2 多巴胺分子 12
2-4-3 多巴胺的氧化還原機制 13
2-4-4 鄰苯二酚與基板結合機制 15
2-4-5 鄰苯二酚衍生物之應用 18
2-5鄰苯二酚衍生物之光響應 19
第三章 實驗藥品、設備、材料合成及實驗方法 21
3-1 實驗藥品 21
3-2 實驗設備 22
3-3 材料合成 23
3-3-1 無水乙醇的製備 23
3-3-2 多巴胺磺酸鹽 23
3-3-3 兩性離子多巴胺磺基甜菜鹼( SB-DA ) 24
3-3-4 兩性離子硝基多巴胺磺基甜菜鹼( SB-nDA ) 25
3-4 實驗方法 26
3-4-1兩性離子多巴胺分子自組裝膜的製備 26
3-4-2多巴胺 (DA) 和兩性離子多巴胺磺基甜菜鹼( SB-DA )電化學性能 26
3-4-3 光照實驗 27
3-4-4接觸角測量 27
3-4-5兩性離子多巴胺分子自組裝膜之橢圓偏振儀厚度量測 28
3-4-6高解析電子能譜儀 (XPS) 分析 28
3-4-7 石英晶體微天平 (QCM-D) 對牛血清白蛋白 (BSA) 吸附試驗 29
3-4-8 細菌貼附實驗 30
第四章 實驗結果 31
4-1 兩性離子多巴胺磺基甜菜鹼( SB-DA ) 31
4-1-1 兩性離子多巴胺磺基甜菜鹼NMR頻譜分析 31
4-1-2 pH值調控SB-DA的還原氧化 32
4-1-3 自組裝單層膜的接觸角測量 33
4-1-4 XPS元素組成和薄膜的化學狀態 34
4-1-5 SB-DA自組裝膜的防污性能 36
4-2 兩性離子硝基多巴胺磺基甜菜鹼( SB-nDA ) 39
4-2-1 兩性離子硝基多巴胺磺基甜菜鹼NMR頻譜分析 40
4-2-2 自組裝單層膜的接觸角測量 41
4-2-3 XPS元素組成和薄膜的化學狀態 42
4-2-4 SB-nDA自組裝膜的抗污性能 44
第五章 討論 47
5-1 兩性離子多巴胺磺基甜菜鹼( SB-DA ) 47
5-1-1 pH值調控SB-DA的還原氧化 47
5-1-2 自組裝單層膜的接觸角測量 49
5-1-3 XPS元素組成和薄膜的化學狀態 50
5-1-4 SB-DA自組裝膜的防污性能 53
5-2 兩性離子硝基多巴胺磺基甜菜鹼( SB-nDA ) 54
5-2-1 XPS元素組成和薄膜的化學狀態 54
5-2-2 SB-nDA自組裝膜的抗污性能 55
5-2-3 SB-nDA光裂解機制 56
第六章 結論 57
第七章 未來展望 58
第八章 參考文獻 59
參考文獻 1. Jana Jass, S.S., andJames Walker, Rodney M. Donlan, Problems of Biofilms Associated with Medical Devices and Implants. 2003, John Wiley & Sons.
2. Vertes, A., V. Hitchins, and K.S. Phillips, Analytical Challenges of Microbial Biofilms on Medical Devices. Analytical Chemistry, 2012. 84(9): p. 3858-3866.
3. Bikramjit Basu, D.S.K.a.K., Fundamentals of Biomaterials and Biocompatibility. 2009, The American Ceramic Society.
4. Chen, S.F., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
5. Edwards, A.K.D.a.S.F., The Effect of Excluded Volume on Polymer Dispersant Action. Proc. R. Soc. Lond. A, 1975. 343: p. 427-442.
6. Hermans, J., Excluded‐volume theory of polymer–protein interactions based on polymer chain statistics. J. Chem. Phys., 1982. 77: p. 2193-2203.
7. A Abuchowski, T.v.E., N C Palczuk and F F Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. The Journal of Biological Chemistry, 1977. 252: p. 3578-3581.
8. Han, S.K., C.; Kwon, D., THERMAL-DEGRADATION OF POLY (ETHYLENEGLYCOL). Polym. Degrad. Stabil., 1995. 47(2): p. 203-208.
9. Han, S., C. Kim, and D. Kwon, Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer, 1997. 38(2): p. 317-323.
10. Li, L.Y., S.F. Chen, and S.Y. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science-Polymer Edition, 2007. 18(11): p. 1415-1427.
11. Iwasaki, Y. and K. Ishihara, Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry, 2005. 381(3): p. 534-546.
12. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000. 18(3-4): p. 261-275.
13. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
14. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
15. Ishihara, K., et al., HEMOCOMPATIBILITY OF HUMAN WHOLE-BLOOD ON POLYMERS WITH A PHOSPHOLIPID POLAR GROUP AND ITS MECHANISM. Journal of Biomedical Materials Research, 1992. 26(12): p. 1543-1552.
16. Jiang, S.Y. and Z.Q. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p. 920-932.
17. Chang, Y., et al., Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling. Langmuir, 2010. 26(5): p. 3522-3530.
18. Chang, Y., et al., Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials, 2013. 23(9): p. 1100-1110.
19. Li, Y.T., et al., Simple and Robust Approach for Passivating and Functionalizing Surfaces for Use in Complex Media. Langmuir, 2012. 28(25): p. 9707-9713.
20. Gao, C.L., et al., Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 2010. 31(7): p. 1486-1492.
21. Shen, C.H. and J.C. Lin, Improving the Surface Biocompatibility with the Use of Mixed Zwitterionic Self-Assembled Mono layers Prepared by a Proper Solvent. Langmuir, 2011. 27(11): p. 7091-7098.
22. Shen, C.H. and J.C. Lin, Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids and Surfaces B-Biointerfaces, 2013. 101: p. 376-383.
23. Ralph G. Nuzzo , D.L.A., Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 1983. 105(13): p. 4481–4483.
24. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly. 1991: ACADEMIC PressINC, 1991.
25. Hung, C., J., Surface ener Engineering 2013.
26. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1169.
27. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430.
28. Lee, H., N.F. Scherer, and P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(35): p. 12999-13003.
29. Waite, J.H. and X.X. Qin, Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry, 2001. 40(9): p. 2887-2893.
30. Chien, C.Y. and W.B. Tsai, Poly(dopamine)-Assisted Immobilization of Arg-Gly-Asp Peptides, Hydroxyapatite, and Bone Morphogenic Protein-2 on Titanium to Improve the Osteogenesis of Bone Marrow Stem Cells. Acs Applied Materials & Interfaces, 2013. 5(15): p. 6975-6983.
31. McCloskey, B.D., et al., Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer, 2010. 51(15): p. 3472-3485.
32. Ou, J.F., et al., Construction and study on corrosion protective property of polydopamine-based 3-layer organic coatings on aluminum substrate. Progress in Organic Coatings, 2010. 68(3): p. 244-247.
33. Ku, S.H. and C.B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials, 2010. 31(36): p. 9431-9437.
34. Ye, Q., F. Zhou, and W.M. Liu, Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 2011. 40(7): p. 4244-4258.
35. Zurcher, S., et al., Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. Journal of the American Chemical Society, 2006. 128(4): p. 1064-1065.
36. Amstad, E., et al., Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups. Nano Letters, 2009. 9(12): p. 4042-4048.
37. Fan, X.W., et al., Biomimetic anchor for surface-initiated polymerization from metal substrates. Journal of the American Chemical Society, 2005. 127(45): p. 15843-15847.
38. Amstad, E., et al., Surface Functionalization of Single Superparamagnetic Iron Oxide Nanoparticles for Targeted Magnetic Resonance Imaging. Small, 2009. 5(11): p. 1334-1342.
39. Malisova, B., et al., Poly(ethylene glycol) Adlayers Immobilized to Metal Oxide Substrates Through Catechol Derivatives: Influence of Assembly Conditions on Formation and Stability. Langmuir, 2010. 26(6): p. 4018-4026.
40. Pop-Georgievski, O., et al., Nonfouling Poly(ethylene oxide) Layers End-Tethered to Polydopamine. Langmuir, 2012. 28(40): p. 14273-14283.
41. Moser, J., et al., SURFACE COMPLEXATION OF COLLOIDAL SEMICONDUCTORS STRONGLY ENHANCES INTERFACIAL ELECTRON-TRANSFER RATES. Langmuir, 1991. 7(12): p. 3012-3018.
42. Rajh, T., et al., Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. Journal of Physical Chemistry B, 2002. 106(41): p. 10543-10552.
43. Dalsin, J.L., et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir, 2005. 21(2): p. 640-646.
44. Rodenstein, M., et al., Fabricating Chemical Gradients on Oxide Surfaces by Means of Fluorinated, Catechol-Based, Self-Assembled Monolayers. Langmuir, 2010. 26(21): p. 16211-16220.
45. Li, S.C., et al., Hydrogen Bonding Controls the Dynamics of Catechol Adsorbed on a TiO2(110) Surface. Science, 2010. 328(5980): p. 882-884.
46. Yu, B., et al., Robust polydopamine nano/microcapsules and their loading and release behavior. Chemical Communications, 2009(44): p. 6789-6791.
47. Wei, H., et al., Compact Zwitterion-Coated Iron Oxide Nanoparticles for Biological Applications. Nano Letters, 2012. 12(1): p. 22-25.
48. Zhou, Z.J., et al., Engineered Iron-Oxide-Based Nanoparticles as Enhanced T-1 Contrast Agents for Efficient Tumor Imaging. Acs Nano, 2013. 7(4): p. 3287-3296.
49. Wei, H., et al., Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging. Integrative Biology, 2013. 5(1): p. 108-114.
50. Walbert, S., W. Pfleiderer, and U.E. Steiner, Photolabile protecting groups for nucleosides: Mechanistic studies of the 2-(2-nitrophenyl)ethyl group. Helvetica Chimica Acta, 2001. 84(6): p. 1601-1611.
51. Zahid Shafiq, J.C., Lourdes Pastor-Prez, Vernica San Miguel, Radu A. Gropeanu, and a.A.n.d.C. Cristina Serrano, Bioinspired Underwater Bonding and Debonding on Demand. Angew. Chem. Int. Ed. , 2012. 51: p. 4332 –4335.
52. Keller, C.A. and B. Kasemo, Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophysical Journal, 1998. 75(3): p. 1397-1402.
53. Keller, C.A., et al., Formation of supported membranes from vesicles. Physical Review Letters, 2000. 84(23): p. 5443-5446.
54. Huang, C.J., et al., Type I Collagen-Functionalized Supported Lipid Bilayer as a Cell Culture Platform. Biomacromolecules, 2010. 11(5): p. 1231-1240.
55. Moulder, J.F.S., W .F.; Sobol, P. E.; Bomben, K. D. , Handbook of x-ray photoelectron spectroscopy. 1992, Boca Raton.
56. Yang, W.J., et al., Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polymer Chemistry, 2013. 4(10): p. 3105-3115.
57. Ivashenko, O., et al., Rapid reduction of self-assembled monolayers of a disulfide terminated para-nitrophenyl alkyl ester on roughened Au surfaces during XPS measurements. Chemical Physics Letters, 2013. 559: p. 76-81.
58. Bernsmann, F., et al., Dopamine-Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution. Langmuir, 2011. 27(6): p. 2819-2825.
59. Bernsmann, F., et al., Characterization of Dopamine-Melanin Growth on Silicon Oxide. Journal of Physical Chemistry C, 2009. 113(19): p. 8234-8242.
60. Holten-Andersen, N., et al., pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(7): p. 2651-2655.
61. Chen, Q., et al., Molecules Immobilization in Titania Nanotubes: A Solid-State NMR and Computational Chemistry Study. Journal of Physical Chemistry C, 2008. 112(44): p. 17331-17335.
62. Anderson, T.H., et al., The Contribution of DOPA to Substrate-Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films. Advanced Functional Materials, 2010. 20(23): p. 4196-4205.
63. Yu, J., et al., Adhesion of Mussel Foot Protein-3 to TiO2 Surfaces: the Effect of pH. Biomacromolecules, 2013. 14(4): p. 1072-1077.
64. Wei, W., et al., Hydrophobic Enhancement of Dopa-Mediated Adhesion in a Mussel Foot Protein. Journal of the American Chemical Society, 2013. 135(1): p. 377-383.
65. Goda, T., et al., Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform. Chemical Communications, 2013. 49(77): p. 8683-8685.
66. Huang, C.J.W., L. C.; Liu, C. Y.; Chiang, A. S. T.; Chang, Y. C., Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases, 2014. 9(2).
67. Emmenegger, C.R.B., E.; Riedel, T.; Sedlakova, Z.; Houska, M.; Alles, A. B., Interaction of Blood Plasma with Antifouling Surfaces. Langmuir, 2009. 25(11): p. 6328-6333.
68. Lee, D. and S. Yang, Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators B-Chemical, 2012. 162(1): p. 425-434.
69. Chen, S.F., et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
70. Shunsuke Chatani, C.J.K., Christopher N. Bowman, The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem., 2014. 5: p. 2187-2201.

指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明