博碩士論文 982406009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.178.82
姓名 曾少澤(Shao-ze Tseng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面粗化技術對矽基異質接面薄膜太陽能電池元件之研究
(Surface Texturization Technology on the Applications of Heterojunction Silicon Solar Cells)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 太陽能電池元件的光生電流大小與元件的光損耗(Optical loss)有關,對於經拋光處理後的平面單晶矽晶圓基板而言,於其材料吸收波段的入射光平均反射率會高達36%左右,這對於電池元件而言是非常大的光損耗現象,因此製作高效抗反射結構應用於電池元件上一直是非常熱門的研究題目之一。本論文研究主題在於利用奈米小球微影方法(Nanosphere lithography)於矽晶圓表面製作奈米級二維週期性粗化結構,使矽晶圓對於其吸收波段的平均反射率能夠大幅降低,並將此奈米級粗化結構應用於本研究團隊核心技術之磁控濺鍍法製備矽基異質接面薄膜太陽能電池上,接著探討分析粗化結構的參數變化對於電池元件輸出特性的影響。
本論文首先會探討磁控濺鍍參數與製備異質接面電池元件中的矽薄膜特性變化關係,並選擇合適的矽薄膜應用於電池元件上得到初步的元件效率,再針對元件製程以及透明導電膜的結構進行改良優化之研究,進而得到轉換效率穩定且再現性佳的電池元件。接著製作出不同結構參數的奈米級粗化結構矽基板應用於電池元件表面,探討奈米抗反射結構對電池元件輸出特性的影響。本論文之實驗結果證實利用奈米小球微影法製作出的最佳奈米級表面抗反射結構於波長區段為400 nm~1000 nm之平均反射率可降低至1.24%,而加上適當厚度抗反射薄膜則可將基板平均反射率再優化至0.53%。另外,結合奈米小球微影法製程之粗化結構異質接面電池元件的最低平均反射率可降至2.04%,該粗化結構對電池元件轉換效率的提昇效果可達31.49%。
摘要(英) The photo-currents of solar cells are dependent on the optical loss. For example, there is about 36% of average reflectance on a polished Si wafer within the absorb wavelength region. Therefore, how to fabricate an anti-reflection structure to achieve a high efficiency solar cell has been one of the popular research topics.
In this research, a method for a HJT solar cell fabricated by using radio frequency magnetron sputtering has been described. The HJT solar cell was formed on a nanostructure silicon substrate fabricated using the nanosphere lithography process. The nanostructure properties were analyzed to compare with the output characteristics of the HJT solar cell. According to our measurement results, the average reflectance of a Si wafer with the bullet anti-reflection nanostructure was decreased to 1.24% between the wavelength arrange of 400 nm ~ 1000 nm. Then we deposited an anti-reflection thin film on the bullet nanostructure to achieve a better anti-reflection effect where the average reflectance was decreased to 0.53%. The best conversion efficiency of the nanopattern silicon substrate (NPSiS) HJT solar cell was 31.49% greater than that of the HJT solar cell on a flat silicon wafer. The average reflectance of the NPSiS HJT solar cell and the polished HJT solar cell were 2.04% and 14.80%, respectively.
關鍵字(中) ★ 抗反射結構
★ 異質接面薄膜太陽能電池
★ 磁控濺鍍
★ 表面粗化技術
關鍵字(英) ★ Anti-reflection structures
★ Heterojunction thin film solar cells
★ Magnetron sputtering
★ Surface texturization technology
論文目次 第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1 濺鍍法製作矽薄膜之研究文獻回顧 4
1.2.2 抗反射層之研究文獻回顧 6
1.3研究動機 16
1.4 研究規劃 17
第二章 理論基礎與研究工具介紹 19
2.1物理氣相沈積技術:真空濺鍍 19
2.2太陽能電池原理 23
2.2.1 p-n接面 23
2.2.2 太陽能電池輸出特性 25
2.2.3 異質接面太陽能電池工作原理 30
2.3太陽能電池元件抗反射設計原理 31
2.4 矽薄膜特性分析原理 35
2.4.1矽薄膜光學特性 35
2.4.1.1 折射率與吸收係數 35
2.4.1.2 光學能隙 36
2.4.1.3 Urbach energy 36
2.4.2 矽薄膜電性 38
2.4.2.1 導電率 38
2.4.2.2 薄膜電阻率、載子濃度與遷移率 39
2.4.2.3 活化能 40
2.4.3 矽薄膜晶體結構特性 41
2.5結論 43
第三章 元件模擬、矽薄膜光電特性分析與元件特性 44
3.1電池元件模擬 44
3.1.1 AMPS-1D模擬方法介紹 44
3.1.2 模擬參數介紹 45
3.1.3 元件模擬結果與分析 48
3.2 多腔式磁控濺鍍系統(MAGNETRON SPUTTERING CLUSTER SYSTEM)介紹 49
3.3 P型摻雜矽薄膜之製備參數與光電特性分析 52
3.3.1硼顆粒面積佔靶材面積50%之矽薄膜沈積 53
3.3.2硼顆粒面積佔靶材表面電漿環區域面積20%之矽薄膜沈積 56
3.3.3磁控濺鍍法製備p型摻雜含氫矽薄膜結論 61
3.4元件製作介紹與說明 61
3.5 異質接面太陽能電池元件特性分析 64
3.6 結論 69
第四章 元件優化_製程改善、基板鈍化處理 72
與透明導電膜優化 72
4.1元件製程優化 73
4.1.1元件正背電極優化 73
4.1.2柵狀正電極之圖案優化 75
4.2 矽晶圓表面鈍化處理 80
4.2.1半導體之載子復合現象與生命週期 80
4.2.2表面鈍化處理方法介紹 85
4.2.3表面鈍化處理於元件輸出特性之結果分析 87
4.3透明導電膜改良優化 92
4.3.1透明導電膜簡介 94
4.3.2透明導電膜製作參數與光電特性分析 95
4.3.2.1具高導電性的ITO膜光電特性分析 96
4.3.2.2具高功函數的ITO膜光電特性分析 99
4.3.3透明導電膜優化之元件輸出特性結果分析 102
4.4結論 104
第五章 具表面粗化結構之矽晶圓光學特性 107
模擬與結果分析 107
5.1 光學模擬方法介紹 107
5.1.1嚴格耦合波分析法(RCWA) 107
5.1.2 有限時域差分法(FDTD) 108
5.2模擬環境參數說明與平面矽基板之反射率模擬結果 110
5.3 具表面粗化結構之矽基板反射率模擬結果與分析 112
5.3.1圓錐型結構模擬結果與分析 112
5.3.2平台型結構模擬結果與分析 114
5.3.3子彈型結構模擬結果與分析 116
5.4 結論 118
第六章 具表面粗化結構之矽基板與電池元件特性分析 120
6.1 具表面粗化結構矽晶圓基板反射率量測結果 120
6.1.1奈米小球微影法與具粗化結構矽基板製程介紹 120
6.1.2具表面粗化結構矽晶圓基板反射率量測結果 122
6.1.2.1具圓錐型粗化結構之基板反射率實際量測結果 123
6.1.2.2具平台型粗化結構之基板反射率實際量測結果 124
6.1.2.3具子彈型粗化結構之基板反射率實際量測結果 126
6.1.3改善優化子彈型結構之基板反射率量測結果 128
6.2以陽極氧化鋁法製作之具表面粗化結構電池元件 133
6.2.1陽極氧化鋁法 133
6.2.2 電池元件製作流程說明 135
6.2.3基板反射光譜結果與元件輸出特性結果分析 138
6.3小球微影法製作之具表面粗化結構電池元件 141
6.3.1 具粗化結構之矽基板反射率模擬結果與分析 142
6.3.2電池元件製作流程說明 144
6.3.3基板反射光譜結果與元件輸出特性結果分析 149
6.4 結論 159
第七章 結論 161
7.1結論 161
7.2 未來研究方向 168
參考文獻 169
參考文獻 [1.1] 許巧玲, 科學天地. (2004) 10-15
[1.2] 張品全, 科學發展. 349 (2002) 23-29
[1.3]http://commons.wikimedia.org/wiki/File%3ABest_Research-Cell_Efficiencies.png.
[1.4] G. A. Martin, E. Keith, H. Yoshihiro, W. Wilhelm and D. D. Ewan “Solar cell efficiency tables (version 43)” Progress in Photovoltaics: Research and Application, 22, 1-9, (2014).
[1.5] M. Tanaka, T. Matsuyma, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, "Devolpment of New a-Si/ c-Si Heterojunctiom Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)" Applied Physics Letters, 31, 3518-3522, (1992).
[1.6]http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html
[1.7] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, and electrical properties of amorphous silicon films”, Physical Review B, 1, 2632-2641, (1970).
[1.8] G. A. N. Connell and J. R. Pawlik, “Use of hydrogen in structural and electronic studies of gap states in amorphous germanium”, Physical Review B, 13, 787-804, (1976).
[1.9] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium”, Physical Review B, 14, 658-668, (1970).
[1.10] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Philosophical Magazine, 33, 935-949, (1976).
[1.11] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Solid State Communications, 20, 969-972, (1976).
[1.12] T. D. Moustakas, D. A. Anderson and W. Pual, “Preparation of highly photoconductive amorphous silicon by rf sputtering”, Solid State Communications, 23, 155-158, (1977).
[1.13] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, 31, 292-294, (1977).
[1.14] M. H. Brodsky, M. Cardona and J. J. Cuomo “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Physical Review B, 16, 3556-3571, (1977).
[1.15] E. C. Freeman and W. Paul, “Infrared vibrational spectra of rf-sputtered hydrogenated amorphous silicon”, Physical Review B, 18, 4288-4300, (1978).
[1.16] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, Journal Electronic Materials, 8, 391-435, (1979).
[1.17] T. Tiedje, T. D. Moustakas and J. M. Cebulka, “Effect of hydrogen on the density of gap states in reactively sputtered amorphous silicon”, Physical Review B, 23, 5634-5637, (1981).
[1.18] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated by reactive sputtering”, Applied Physics Letters, 40, 515-517, (1982).
[1.19] T. D. Moustakas and H. P. Maruska, “Method for sputtering a pin microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets” United States Patent, No.4508609, (1985).
[1.20] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering” Physica B, 308-310, 257-260, (2001).
[1.21] M. M. de Lima Jr., F. L. Freire Jr., and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering” Brazilian Journal of Physics, 32, 379-382, (2002).
[1.22] M. Pinarbasi, J. R. Abelson and M. J. Kushner, “Reduced Staebler-Wronski effect in reactively sputtered hydrogenated amorphous silicon thin films”, Applied Physics Letters, 56, 1685-1687, (1990).
[1.23] Minfeng Chen, Hung-chun Chang, Allan S. P. Chang, Shawn-Yu Lin, J.-Q. Xi, and E. F. Schubert, ”Design of optical path for wide-angle gradient-index antireflection coatings”, Apploed Optics, 46, 26, 6533-6538, (2007).
[1.24] Mei-Ling Kuo, David J. Poxson, Yong Sung Kim, Frank W. Mont, Jong Kyu Kim, E. Fred Schubert,and Shawn-Yu Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization”, Optics Letters, 33, 2527-2529, (2008).
[1.25] H. Angermann, J. Rappich a, L. Korte , I. Sieber , E. Conrad , M. Schmidt , K. Hu¨bener , J. Polte , J. Hauschild, ” Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application”, Applied Surface Science, 254, 3615-3625, (2008).
[1.26] Chung-Feng Jeffrey Kuo, Hung-Min Tu, Te-Li Su, “Optimization of the Electron-Beam-Lithography Parameters for the Moth-Eye Effects of an Antireflection Matrix Structure”, Journal of Applied Polymer Science, 102, 5303-5313, (2006).
[1.27] Kui-Qing Peng, Xin Wang, Li Li, Xiao-Ling Wu, and Shuit-Tong Lee, “High-Performance Silicon Nanohole Solar Cells”, Journal of the American Chemical Society, 132, 6872-6873, (2010).
[1.28] Erik H. Anderson, Henry I. Smith, Mark L. Schattenburg, “Holographic Lithography”, United States Patent, No.5142385, (1992).
[1.29] Chaitanya K. Ullal, Martin Maldovan, Edwin L. Thomas, Gang Chen, Yong-Jin Han, and Shu Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures”, Applied Physics Letters, 84, 5434-5436, (2004).
[1.30] Hitoshi Sai,a Homare Fujii, Koji Arafune, Yoshio Ohshita, Masafumi Yamaguchi, Yoshiaki Kanamori and Hiroo Yugami, ” Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks”, Applied Physics Letters, 88, 201116, (2006).
[1.31] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting”, Applied Physics Letters, 94, 263118, (2009).
[1.32] Gong-Ru Lin, Ya-Chung Chang, En-Shao Liu, Hao-Chung Kuo and Huang-Shen Lin, “Low refractive index Si nanopillars on Si substrate”, Applied Physics Letters, 90, 181923, (2007).
[1.33] H.W. Deckman, J.H. Dunsmuir, “Natural lithography”, Applied Physics Letters, 41, 377, (1982).
[1.34] W.A. Nositschka, C. Beneking, O. Voigt, H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks”, Solar Energy Materials & Solar Cells, 76, 155-166, (2003).
[1.35] Chih-Hung Sun, Brian J. Ho, Bin Jiang, and Peng Jiang, “Biomimetic subwavelength antireflective gratings on GaAs”, Optics Letters, 33, 2224-2226, (2008).
[1.36] Chia-Hung Hou, Shao-Ze Tseng, Chia-Hua Chan, Tsing-Jen Chen, Hung-Ta Chien, Fu-Li Hsiao, Hua-Kung Chiu, Chien-Chieh Lee, Yen-Ling Tsai, and Chii-Chang Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres”, Applied Physics Letters, 95, 133105, (2009).
[2.1] 李正中, “薄膜光學與鍍膜技術”, 第六版, 藝軒圖書出版社, (2009).
[2.2] http://www.pveducation.org/pvcdrom/pn-junction。
[2.3] Martin A. Green著, 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用”, 五南圖書出版有限公司, (2009).
[2.4]Masayuki Iwamoto, Kouji Minami and Toshihiko Yamaoki, “Photovoltaic device”, US patent 5066340, (1991).
[2.5] Makoto Tanaka, Mikio Taguchi, Takao Matsuyama, Toru Sawada, Shinya Tsuda, Shoichi Nakano, Hiroshi Hanafusa and Yukinori Kuwano, “Development of New a-Si/ c-Si Heterojunction Solar cells: ACH-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Japanese Journal of Applied Physics, 31, 3518-3522, (1992).
[2.6] B. Jagannathan, W. A. Anderson, J. Coleman, "Amorphous Silicon/p-type Crystalline Silicon Heterojunction Solar Cells", Solar Energy Material and Solar Cells, 46, 289-310, (1997).
[2.7] C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes”, Acta Physiologica Scandinavica, 56, 385-386, (1962).
[2.8] http://finediamondtools.blogspot.tw/2010/10/moths-eye.html.
[2.9] J. Poortmans and V. Arhipov, “Thin Film Solar Cells Fabrication, characterization and Applications”, (John Wiley & Sons, 2006).
[2.10] K. Tanaka. “Minimal Urbach energy in non-crystalline materials”. Journal of Non-Crystalline Solids, 389, 35-37, (2014).
[2.11] G. Lucovsky and W. B. Pollard, “The Physics of Hydrogenated Amorphous Silicon, Part II, Topics in Applied Physics”, (Springer, 1984).
[2.12] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Physical Review B, 45, 13367-13377, (1992).
[2.13] R. Schropp and M. Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, (Kluwer Academic Publishers, 1998).
[3.1] Yiming Liu, Yun Sun, Angus Rockett, “A newsimulationsoftwareofsolarcells—wxAMPS”, Solar Energy Materials & Solar Cells, 98, 124-128, (2012).
[3.2] H. Zhu et. al., ” Applications of AMPS-1D for solar cell simulation” in Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, Denver, Colorado, USA, 309–314, (1999).
[3.3] http://www.ampsmodeling.org/materialData_silicon.html
[3.4] I. Wagner, H. Stasiewski, B. Abeles, and W. A. Lanford, “Surface states in P- and B-doped amorphous hydrogenated silicon”, Physical Review B, 28, 7080-7086, (1983).
[3.5] J. Ristein and G. Weiser, “Influence of doping on the optical properties and on the covalent bonds in plasma deposited amorpohus silicon”, Solar Energy Material and Solar Cells, 12, 221-232, (1985).
[3.6] M. M. de Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, Journal of Non-Crystalline Solids, 299-302, 605-609, (2002).
[3.7] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Physical Review B, 34, 7031-7044, (1986).
[3.8] C. C. Tsai, “Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition”, Physical Review B, 19, 2041-2055, (1979).
[3.9] 王宣文, “以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響”, 國立中央大學博士論文, (2012).
[3.10] Park Ridge, “Handbook of semiconductor wafer cleaning technology : science, technology, and applications”, N.J., U.S.A. : Noyes Publications, (1993).
[3.11] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (version 39)”, Progress in Photovoltaics: Research and Applications, 20, 12-20, (2012).
[3.12] D. H. Zhang, B. Chen and D. Haneman, “Metal contacts on amorphous hydrogenated silicon: effects of annealing”, Thin Solid Films, 208, 87-90, (1992).
[3.13] S. K. Kim, J. C. Lee, S. J. Park, Y. J. Kim, K. H. Yoon, "Effect of Hydrogen Dilution on Intrinsic a-Si:H Layer Between Emitter and Si Wafer in Silicon Heterojunction Solar Cell " Solar Energy Materials and Solar Cells, 92, 298-301, (2008).
[4.1] S.Huet, G.V iera, L.Boufendi, “Effect of small crystal size and surface temperature on the Raman spectra of amorphous and nanostructured Si thin films deposited by radiofrequency plasmas”, Thin Solid Films, 403-404, 193-196, (2002).
[4.2] Shibin Li, Yadong Jiang, Zhiming Wu, Jiang Wu, Zhihua Ying, Zhiming Wang, Wei Li and Gregory Salamo, “Origins of 1/f noise in nanostructure inclusion polymorphous silicon films”, Nanoscale Research Letters, 6, 281, (2011).
[4.3] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, Hitoshi Sakata, Eiji Maruyama, Makoto Tanaka, "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells,93 ,670-673, (2009).
[4.4]Donald A. Neamen著, 楊賜麟譯, “半導體物理與元件”, 滄海書局出版, 初版, (2005).
[4.5]王佑庭, “以濺鍍法與表面鈍化處理製作矽基異質接面太陽能電池”, 國立中央大學碩士論文, (2013).
[4.6] H. Angermann, E. Conrad, L. Korte, J. Rappich, T. F. Schulze, and M. Schmidt, "Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 159-60, 219-223, (2009).
[4.7] S. Watanabe and Y. Sugita, "The role of dissolved-oxygen in hot-water during dissolving oxides and terminating silicon surfaces with hydrogen," Surface Science,327 ,1-8, (1995).
[4.8] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE, 457-460, (1996).
[4.9] R. A. Sinton and A. Cuevas, "Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data," Applied Physics Letters, 69, 2510, (1996).
[4.10] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation," Solar Energy Materials and Solar Cells, 92, 673-681, (2008).
[4.11] W. K. Oh, S. Q. Hussain, Y. J. Lee, Y. Lee, S. Ahn, and J. Yi, "Study on the ITO work function and hole injection barrier at the interface of ITO/a-Si: H(p) in amorphous/crystalline silicon heterojunction solar cells," Materials Research Bulletin, 47, 3032-3035, (2012).
[4.12] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation," physica status solidi (a), 205, 1215-1221, (2008).
[4.13] 周世欽, “透明導電膜功函數對矽異質接面太陽能電池之影響”, 國立中央大學碩士論文, (2013).
[4.14] K. Bädeker, ” Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen”, Annalen der Physik (Annals of Physics), 327, 749-766, (1907).
[4.15]中澤弘實,“最新太陽能電池總覽”, 株式會社技術情報協會發行, p.397, Sep. (2007).
[4.16]楊明輝, “透明導電膜”, 第二版, 藝軒圖書出版社發行, Nov. (2012).
[4.17] J.-H. Lee, "Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering," Journal of Electroceramics, 23, 554-558, (2009).
[4.18] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, 47, 4086-4089, (1976).
[5.1] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, Optical Society of America, 71, 811-818, (1981).
[5.2] L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures”, Optical Society of America, 13, 1870-1876, (1996).
[5.3] S. T. Peng, T. Tamir and H. L. Bertoni, “Theory of periodic dielectric waveguides”, IEEE Transactions on Microwave Theory and Techniques, 23, 123-133, (1975).
[5.4] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions Antennas Propagation, 14, 302-307, (1966).
[5.5] K. K. Kawano, and Tsutomu, “Introduction to optical waveguide analysis: Solving Maxwell′s equation and the Schrödinger equation", (John Wiley & Sons, 2001).
[5.6]欒丕綱, 陳啟昌, ”光子晶體-從蝴蝶翅膀到奈米光子學”,五南圖書出版股份有限公司, (2006)
[5.7] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves”, Journal of Computational Physics, 114, 185-200, (1994).
[5.8]陳煒,”用奈米小球微影法製作多晶矽太陽能電池表面結構”, 國立中央大學碩士論文, (2011).
[6.1] Shao-Ze Tseng, Chang-Rong Lin, Hung-Sen Wei, Chia-Hua Chan, and Sheng-Hui Chen, “Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering”, International Journal of Photoenergy, accepted, (2014).
[6.2] A. P. Li, F. Auller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by self-organization in Anodic Alumina”, Journal of Applied Physics, 84, 11, 6523-6526, (1998).
[6.3] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, H. Yugami, "Antireflective Subwavelength Structures on Crystalline Si Fabricated Using Directly Formed Anodic Porous Alumina Masks", Applied Physics Letters, 88, 201116-201111-3, (2006).
[6.4] Martin A. Green著, 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用”, 五南圖書出版有限公司, pp. 102~105, (2009).
[6.5] M. A. Green, “General solar cell curve factors including the effects of ideality factor, temperature and series resistance”, Solid-State Electronics, 20, 265-266, (1977).
指導教授 陳昇暉(Sheng-hui Chen) 審核日期 2014-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明