![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:18 、訪客IP:18.119.248.54
姓名 侯宜君(Yi-chun Hou) 查詢紙本館藏 畢業系所 統計研究所 論文名稱 一個普世的分析交叉實驗個數資料的有母數強韌法
(A universal parametric robust approach for analyzing count data from cross over designs)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文指出二元負二項模型可經適當的修正後提供具強韌性的概似函數。在不知道資料的聯合分配情況之下,可利用此強韌概似函數分析在交叉實驗設計下的個數資料,進而決定樣本數。我們並將此有母數的強韌概似函數法與Lui (2013) 所提的方法做有效性的比較。 摘要(英) The aim of this dissertation is to show that the bivariate negative binomial distribution, when properly adjusted, is a convenient tool for analyzing count data from cross over designs. We contrast this universal parametric robust with a currently proposed method in literature in terms of validity and efficiency. The issue of sample size determination is also examined. 關鍵字(中) ★ 強韌概似函數
★ 相關性資料
★ 二元負二項
★ 交叉實驗設計關鍵字(英) ★ robust likelihood
★ correlation data
★ bivariate negative binomial
★ crossover design論文目次 摘要...............i
Abstract..........ii
致謝詞.............iii
目錄...............iv
表目錄..............v
第一章 緒論.........1
第二章 條件二項分配..3
2.1條件二項分配.....3
2.2漸近的檢定方法 (asymptotic test) 與樣本數......4
2.3一致性...........8
第三章 強韌概似函數....11
3.1 強韌概似函數......11
3.2 二元負二項模型的修正項......13
3.3 強韌的樣本數公式......26
第四章 模擬研究......29
4.1相關性資料的有效性比較......29
4.2 樣本數......37
第五章 結論......63
參考文獻......64
附錄......65
參考文獻 1.Arbous, A. G., Kerrich, J. E. (1951) Accident statistics and the concept of accident proneness. Biometrics, 7, 340-432.
2.Gart, J. J. (1969) An exact test for comparing matched proportions in crossover designs. Biometrika, 56, 75-80.
3.Jones, B., Kenward, M. G. (1989) Design and Analysis of Cross-Over Trials. Chapman and Hall: London.
4.Lui, K. J., Chang, K. C. (2012) Estimation of the proportion ratio under a simple crossover trial. Computational Statistics and Data Analysis, 56, 522-530.
5.Lui, K. J. (2013) Sample size determination for testing equality in Poisson frequency data under an AB/BA crossover trial. Pharmaceutical Statistics, 12, 2, 74-81.
6.McCullagh, P. (1983) Quasi-likelihood functions. Annals of Statistics ,11, 59-67.
7.Royall, R. M., Tsou, T. S. (2003) Interpreting statistical evidence using imperfect models: robust adjusted likelihood functions. Journal of the Royal Statistical Society, Series B, 65, 391-404.
8.Solis-Trapala, I. L., Farewell, V. T. (2005) Regression analysis of overdispersed correlated count data with subject specific covariates. Statistics in Medicine, 24, 2557-2575.
指導教授 鄒宗山 審核日期 2014-7-17 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare