![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:9 、訪客IP:3.16.154.37
姓名 謝瑋(Wei Hsieh) 查詢紙本館藏 畢業系所 通訊工程學系 論文名稱 高效率視訊編碼之運算複雜度分配與控制
(Computational Complexity Allocation and Control for HEVC Encoder)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 新一代視訊壓縮標準High Efficiency Video Coding (HEVC)為近年JCT-VC團隊所制定,相較於過去的壓縮標準,HEVC提供眾多新壓縮技術來達到更高的編碼效率,使其更適用於高解析度的視訊,相對地也大幅增加編碼端的運算複雜度。然而在行動裝置上受限於電源容量,可用的運算複雜度通常是有限的,因此,降低並控制視訊編碼器的運算複雜度以延長行動裝置的使用時間,並且維持較佳的視訊位元率-失真效能是非常重要的議題。
本論文針對HEVC高解析度視訊於運算資源有限的裝置上,提出一套編碼運算複雜度分配與控制機制,包含了畫面層級、編碼單位(Coding Unit, CU)層級之分配與控制,以及預測單位(Prediction Unit, PU)編碼流程改善。首先在畫面層級我們根據每張畫面的量化參數(QP)給予其不同的運算複雜度。接著參考前一張畫面的平均絕對誤差 (Mean Absolute Difference, MAD)將畫面層的運算複雜度分配至最大編碼單位(Largest CU, LCU)層級,並參考空間域與時間域鄰近編碼單位的深度資訊來刪減不必要的編碼單位運算複雜度。在各層編碼單位中,基於分析所得的預測單位編碼增益(Coding Gain, CG)重新修改預測單位編碼流程。本論文所提出的方法可同時達成總體運算複雜度與瞬時運算複雜度限制之應用,實驗結果顯示,在節省40%運算量之目標下,針對總體複雜度與瞬時複雜度之控制,分別可達成平均BD-PSNR僅0.2 dB與0.1 dB損失之效能以及僅有0.3%與0.5%之運算量控制誤差。
摘要(英) The latest video compression standard HEVC was established by the Joint Collaborative Team on Video Coding (JCT-VC) and provided various encoding tools to achieve high coding efficiency in comparison to previous standards at the cost of higher computational complexity. However, the allowable computational capability of a portable device for real-time video encoding is generally constrained. Therefore, a complexity control mechanism that well allocates the computational complexity of video encoding under the complexity constraint while maintaining optimal rate-distortion performance is important.
Therefore, we propose a computational complexity mechanism for high resolution video on a power-constrained device, including computational complexity allocation and control from frame layer to largest coding unit (LCU) layer, and the rearrangement of prediction unit (PU) encoding flow. In frame layer, we allocate different computational complexity based on the quantization parameter (QP) of each frame. In LCU layer, the mean absolute difference (MAD) of previous frame is used to allocate suitable complexity to each LCU. By referring neighboring and co-located depth information of CU, CU depth 0 is skipped in certain situation. And PU encoding flow is arranged based on the coding gain (CG) analyses. The proposed method could simultaneously achieve the entire complexity constraint (ECC) for a sequence and instant complexity constraint (ICC) for real-time encoding. The experimental results show that under a 60% target computational complexity, the loss of average BD-PSNR is negligible and the complexity control error is no more than 0.5%.
關鍵字(中) ★ HEVC
★ 複雜度分配
★ 複雜度控制
★ 編碼單位關鍵字(英) ★ HEVC
★ complexity control
★ complexity allocation
★ coding unit論文目次 摘要 ................................... I
ABSTRACT .......................... II
致謝 ......................... III
目錄 ............................... IV
附圖索引 ................................ VI
附表索引 .............................. VIII
第一章 緒論 ............................ 1
1.1 研究背景 ........................ 1
1.2 研究動機與目的 ................... 2
1.3論文架構 .................................... 3
第二章 HEVC 視訊編碼標準介紹 ................ 3
2.1 HEVC 視訊編碼介紹 .......................... 3
2.1.1 HEVC與 H.264/AVC編碼效能差異................... 3
2.1.2 環境設定 ............................ 6
2.1.3 視訊樣本介紹 ........................ 9
2.2 HEVC視訊編碼架構介紹 ............................ 11
2.2.1 編碼單位(Coding Unit, CU) ....................... 12
2.2.2 預測單位(Prediction Unit, PU) ............... 14
2.2.3 轉換單位(Transform Unit, TU) .................... 17
第三章 複雜度控制相關研究介紹 ................... 18
3.1複雜度控制相關文獻介紹 ....................... 18
3.1.1 HEVC運算複雜度分析 ........................... 18
3.1.2應用於H.264/AVC複雜度控制相關文獻 ............. 19
3.1.3應用於HEVC複雜度控制相關文獻 .................. 22
3.2 本論文研究與現有研究文獻之差異 .........................25
第四章 提出之編碼器複雜度分配與控制 .......................... 26
4.1 畫面層複雜度分配與控制 .................. 28
4.2 編碼單位層運算複雜度分配與控制 ........................... 34
4.2.1利用平均絕對誤差分配運算複雜度 .......... 34
4.2.2 第一層編碼單位深度運算複雜度分配 .................... 37
4.2.3 第零層編碼單位深度之運算複雜度節省 ............ 38
4.3 利用編碼增益理論之運算複雜度控制 ......................... 39
4.4 複雜度補償機制 ....................................... 42
第五章 實驗結果與分析討論 ............................. 43
5.1 總體複雜度限制(Entire Complexity Constraint, ECC) ......44
5.1.1 平均分配複雜度比較 ................ 44
5.1.2 ECC之實驗結果 ......................... 46
5.2 瞬時複雜度限制(Instant Complexity Constraint, ICC) .... 50
5.3 總體與瞬時運算複雜度限制(ECC & ICC) .......... 54
第六章 未來與展望 ............................ 57
參考文獻 ............................................... 58參考文獻 [1] Advanced Video Coding, ITU-T Rec. H.264 and ISO/IEC 1449610(MPEG-4 AVC), Version 13, Mar. 2011.
[2] G. J. Sullivan, J. R. Ohm, W. J. Han, T. Wiegand, “ Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits Syst. Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
[3] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 10 (HM10) Encoder Description,” JCTVC-L1002, 12th JCTVC meeting, Geneva, CH, Jan. 2013.
[4] M. C. Chien, Z. Y. Chen, and P. C. Chang, “Coding-gain-based complexity control for H.264 video encoder, ” 15th IEEE Int. Conf. Image Processing, ICIP, 2008, pp. 2136-2139
[5] Z. He and Y. F. Liang, “Power-Rate-Distortion analysis for wireless video communication under energy constraints,” IEEE Trans. Circuits Syst. Video Technology, vol. 15, no. 5, pp. 645-658, May 2005.
[6] C. Kim and J. Xin, “Hierarchical complexity control of motion estimation for H.264/AVC,” MITSUBISHI ELECTRIC RESEARCH LABORAORIES, TR2006-004, Dec 2006.
Available: http://www.merl.com
[7] Z. Li and G. Wen, “Reusable Architecture and Complexity-Controllable Algorithm for the Integer/Fractional Motion Estimation of H.264,” IEEE Trans. on Cons. Electronics, vol. 53, pp. 749-756, 2007.
[8] D. Martinez-Enriquez, A. Jimenez-Moreno, and F. Diaz-de-Maria, “An adaptive algorithm for fast inter mode decision in the H.264/AVC video coding standard,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 826-834, 2010.
[9] R. Jianfeng, N. Kehtarnavaz, and M. Budagavi, “Computationally efficient mode selection in H.264/AVC video coding,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 877-886, 2008.
[10] G. Corrêa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Complexity Control of High Efficiency Video Encoders for Power-Constrained Devices,” IEEE Transactions on Consumer Electronics, Nov. 2011, vol. 57, no. 4. pp. 1866-1874.
[11] G. Correa, P. Assuncao, L. Agostini, Luis A. da Silva Cruz, “Adaptive Coding Tree for Complexity Control of High Efficiency Video Encoders,” in Picture Coding Symposium (PCS), May. 2012, pp. 425- 428.
[12] G. Correa, P. Assuncao, L. Agostini, Luis A. da Silva Cruz, “Coding Tree Depth Estimation for Complexity Reduction of HEVC,” in Data Compression Conference (DCC), 2013, pp. 43-52
[13] G. Correa, P. Assuncao, L. Agostini, Luis A. da Silva Cruz, “Computational complexity control for HEVC based on coding tree spatio-temporal correlation,” IEEE 20th International Conference on, Electronics, Circuits, and Systems (ICECS), Abu Dhabi, Dec. 2013, pp. 937-940.
[14] G. Correa, P. Assuncao, L. Agostini, L. A. da Silva Cruz, “Dynamic tree-depth adjustment for low power HEVC encoders,” IEEE Int. Conf. Electronics, Circuits and Systems (ICECS), pp. 564-567, 2012.
[15] M. Grellert, M. Shafique, M. U. K. Khan, L. Agostini, J. C. B. Mattos, J. Henkel, “An Adaptive Workload Management Scheme for HEVC”, IEEE Int. Conf. Image Processing (ICIP), Sept. 2013, Melbourne, pp. 1850-1854.
[16] T. Zhao, Z. Wang and S. Kwong, “Flexible Mode Selection and Complexity Allocation in HEVC Efficiency Video Coding,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, Dec 2013, pp.1135-1144.
指導教授 張寶基 審核日期 2014-7-31 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare